Trust-based local and social recommendation

Simon Meyffret, L. Médini, F. Laforest
{"title":"Trust-based local and social recommendation","authors":"Simon Meyffret, L. Médini, F. Laforest","doi":"10.1145/2365934.2365945","DOIUrl":null,"url":null,"abstract":"In this article, we propose an evolution of trust-based recommender systems that only relies on local information and can be deployed on top of existing social networks. Our approach takes into account friends' similarity and confidence on ratings, but limits data exchange to direct friends, in order to prevent ratings from being globally known. Therefore, calculations are limited to locally processed algorithms, privacy concerns can be taken into account and algorithms are suitable for decentralized or peer-to-peer architectures. We have implemented and evaluated our approach against five others, using the Epinions trust network. We show that local information with good default scoring strategies are sufficient to cover more users than classical collaborative filtering and trust-based recommender systems. Regarding accuracy, our approach performs better than most others, specially for cold start users, despite using less information.","PeriodicalId":258534,"journal":{"name":"Proceedings of the 4th ACM RecSys workshop on Recommender systems and the social web","volume":"43 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"18","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 4th ACM RecSys workshop on Recommender systems and the social web","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2365934.2365945","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 18

Abstract

In this article, we propose an evolution of trust-based recommender systems that only relies on local information and can be deployed on top of existing social networks. Our approach takes into account friends' similarity and confidence on ratings, but limits data exchange to direct friends, in order to prevent ratings from being globally known. Therefore, calculations are limited to locally processed algorithms, privacy concerns can be taken into account and algorithms are suitable for decentralized or peer-to-peer architectures. We have implemented and evaluated our approach against five others, using the Epinions trust network. We show that local information with good default scoring strategies are sufficient to cover more users than classical collaborative filtering and trust-based recommender systems. Regarding accuracy, our approach performs better than most others, specially for cold start users, despite using less information.
基于信任的本地和社会推荐
在本文中,我们提出了一种基于信任的推荐系统的进化,该系统仅依赖于本地信息,并且可以部署在现有的社交网络之上。我们的方法考虑了朋友之间的相似性和对评分的置信度,但将数据交换限制在直接的朋友之间,以防止评分被全球知晓。因此,计算仅限于本地处理的算法,可以考虑隐私问题,算法适用于分散或点对点架构。我们已经使用Epinions信任网络对其他五种方法实施并评估了我们的方法。我们表明,与经典的协同过滤和基于信任的推荐系统相比,具有良好默认评分策略的本地信息足以覆盖更多的用户。关于准确性,我们的方法比大多数其他方法表现得更好,特别是对于冷启动用户,尽管使用的信息较少。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信