Formal Validation of Neural Networks as Timed Automata

Elisabetta De Maria, C. Giusto, Giovanni Ciatto
{"title":"Formal Validation of Neural Networks as Timed Automata","authors":"Elisabetta De Maria, C. Giusto, Giovanni Ciatto","doi":"10.1145/3156346.3156350","DOIUrl":null,"url":null,"abstract":"We propose a formalisation of spiking neural networks based on timed automata networks. Neurons are modelled as timed automata waiting for inputs on a number of different channels (synapses), for a given amount of time (the accumulation period). When this period is over, the current potential value is computed taking into account the current inputs and the previous decayed potential value. If the current potential overcomes a given threshold, the automaton emits a broadcast signal over its output channel, otherwise it restarts another accumulation period. After each emission, the automaton is constrained to remain inactive for a fixed refractory period. Spiking neural networks are formalised as sets of automata, one for each neuron, running in parallel and sharing channels according to the structure of the network. The model is then validated against some crucial properties defined via proper temporal logic formulae.","PeriodicalId":415207,"journal":{"name":"Proceedings of the 8th International Conference on Computational Systems-Biology and Bioinformatics","volume":"26 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-12-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 8th International Conference on Computational Systems-Biology and Bioinformatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3156346.3156350","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

We propose a formalisation of spiking neural networks based on timed automata networks. Neurons are modelled as timed automata waiting for inputs on a number of different channels (synapses), for a given amount of time (the accumulation period). When this period is over, the current potential value is computed taking into account the current inputs and the previous decayed potential value. If the current potential overcomes a given threshold, the automaton emits a broadcast signal over its output channel, otherwise it restarts another accumulation period. After each emission, the automaton is constrained to remain inactive for a fixed refractory period. Spiking neural networks are formalised as sets of automata, one for each neuron, running in parallel and sharing channels according to the structure of the network. The model is then validated against some crucial properties defined via proper temporal logic formulae.
神经网络作为时间自动机的形式化验证
我们提出了一种基于时间自动机网络的脉冲神经网络的形式化。神经元被建模为定时自动机,等待输入在许多不同的通道(突触)上,等待给定的时间量(积累周期)。当这段时间结束时,考虑当前输入和先前衰减的电位值,计算当前电位值。如果电流电位超过给定的阈值,则自动机在其输出通道上发出广播信号,否则它将重新开始另一个积累周期。每次发射后,自动机被限制在一个固定的不应期内保持不活动状态。脉冲神经网络被形式化为一组自动机,每个神经元一个自动机,并行运行,并根据网络结构共享通道。然后根据通过适当的时间逻辑公式定义的一些关键属性对模型进行验证。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信