Information extraction from large multi-layer social networks

Brandon Oselio, Alex Kulesza, A. Hero
{"title":"Information extraction from large multi-layer social networks","authors":"Brandon Oselio, Alex Kulesza, A. Hero","doi":"10.1109/ICASSP.2015.7179013","DOIUrl":null,"url":null,"abstract":"Social networks often encode community structure using multiple distinct types of links between nodes. In this paper we introduce a novel method to extract information from such multi-layer networks, where each type of link forms its own layer. Using the concept of Pareto optimality, community detection in this multi-layer setting is formulated as a multiple criterion optimization problem. We propose an algorithm for finding an approximate Pareto frontier containing a family of solutions. The power of this approach is demonstrated on a Twitter dataset, where the nodes are hashtags and the layers correspond to (1) behavioral edges connecting pairs of hashtags whose temporal profiles are similar and (2) relational edges connecting pairs of hashtags that appear in the same tweets.","PeriodicalId":117666,"journal":{"name":"2015 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-04-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICASSP.2015.7179013","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

Abstract

Social networks often encode community structure using multiple distinct types of links between nodes. In this paper we introduce a novel method to extract information from such multi-layer networks, where each type of link forms its own layer. Using the concept of Pareto optimality, community detection in this multi-layer setting is formulated as a multiple criterion optimization problem. We propose an algorithm for finding an approximate Pareto frontier containing a family of solutions. The power of this approach is demonstrated on a Twitter dataset, where the nodes are hashtags and the layers correspond to (1) behavioral edges connecting pairs of hashtags whose temporal profiles are similar and (2) relational edges connecting pairs of hashtags that appear in the same tweets.
大型多层次社交网络的信息提取
社交网络通常使用节点之间的多个不同类型的链接来编码社区结构。本文介绍了一种从这种多层网络中提取信息的新方法,其中每种类型的链路都形成自己的层。利用帕累托最优的概念,将这种多层环境下的社区检测表述为一个多准则优化问题。我们提出了一种寻找包含一组解的近似帕累托边界的算法。这种方法的强大功能在Twitter数据集上得到了演示,其中节点是标签,层对应于(1)连接时间概况相似的标签对的行为边和(2)连接出现在相同tweet中的标签对的关系边。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信