PatterNet

Behnam Khaleghi, U. Mallappa, Duygu Yaldiz, Haichao Yang, Monil Shah, Jaeyoung Kang, Tajana Rosing
{"title":"PatterNet","authors":"Behnam Khaleghi, U. Mallappa, Duygu Yaldiz, Haichao Yang, Monil Shah, Jaeyoung Kang, Tajana Rosing","doi":"10.1145/3489517.3530422","DOIUrl":null,"url":null,"abstract":"Weight clustering is an effective technique for compressing deep neural networks (DNNs) memory by using a limited number of unique weights and low-bit weight indexes to store clustering information. In this paper, we propose PatterNet, which enforces shared clustering topologies on filters. Cluster sharing leads to a greater extent of memory reduction by reusing the index information. PatterNet effectively factorizes input activations and post-processes the unique weights, which saves multiplications by several orders of magnitude. Furthermore, PatterNet reduces the add operations by harnessing the fact that filters sharing a clustering pattern have the same factorized terms. We introduce techniques for determining and assigning clustering patterns and training a network to fulfill the target patterns. We also propose and implement an efficient accelerator that builds upon the patterned filters. Experimental results show that PatterNet shrinks the memory and operation count up to 80.2% and 73.1%, respectively, with similar accuracy to the baseline models. PatterNet accelerator improves the energy efficiency by 107x over Nvidia 1080 1080 GTX and 2.2x over state of the art.","PeriodicalId":373005,"journal":{"name":"Proceedings of the 59th ACM/IEEE Design Automation Conference","volume":"32 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 59th ACM/IEEE Design Automation Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3489517.3530422","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Weight clustering is an effective technique for compressing deep neural networks (DNNs) memory by using a limited number of unique weights and low-bit weight indexes to store clustering information. In this paper, we propose PatterNet, which enforces shared clustering topologies on filters. Cluster sharing leads to a greater extent of memory reduction by reusing the index information. PatterNet effectively factorizes input activations and post-processes the unique weights, which saves multiplications by several orders of magnitude. Furthermore, PatterNet reduces the add operations by harnessing the fact that filters sharing a clustering pattern have the same factorized terms. We introduce techniques for determining and assigning clustering patterns and training a network to fulfill the target patterns. We also propose and implement an efficient accelerator that builds upon the patterned filters. Experimental results show that PatterNet shrinks the memory and operation count up to 80.2% and 73.1%, respectively, with similar accuracy to the baseline models. PatterNet accelerator improves the energy efficiency by 107x over Nvidia 1080 1080 GTX and 2.2x over state of the art.
PatterNet
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信