Some polynomial and Toeplitz matrix computations

V. Pan, J. Reif
{"title":"Some polynomial and Toeplitz matrix computations","authors":"V. Pan, J. Reif","doi":"10.1109/SFCS.1987.52","DOIUrl":null,"url":null,"abstract":"Part 1. Approximate Evaluation of Polynomial Zeros O(n2(1og2n+log b)) arithmetic operations or O( n(log2n+log b) parallel steps, n processors suffice in order to approximate with absolute error ~ 2mb to all the complex zeros of an n-th degree polynomial p(x) whose coefficients have moduli < 2m• If we only need such an approximation to a single zero of p(x), then O(n log n(n+log b)) arithmetic operations or O(log n(log2n+log b)) steps and n+n/(loin+log b) processors suffice (which places the latter problem in NC); furthermore if all the zeros are real, then we arrive at the bounds O(n log n(log3n+log b)), O(log n(log3+log b)), and n, respectively. Those estimates are reached in computations with O(nb) binary bits where the polynomial· has integer coefficients. This also implies a simple proof of the Boolean circuit complexity estimates for the approximation of all the complex zeros of p(x), announced in 1982 and partly proven by Schonhage. The computations rely on recursive application of Turan's proximity test of 1968, on its more recent extensions to root radii computations, and on contour integration via FFT within our modifications of the known geometric constructions for search and exclusion.","PeriodicalId":153779,"journal":{"name":"28th Annual Symposium on Foundations of Computer Science (sfcs 1987)","volume":"21 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1987-10-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"28th Annual Symposium on Foundations of Computer Science (sfcs 1987)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SFCS.1987.52","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 14

Abstract

Part 1. Approximate Evaluation of Polynomial Zeros O(n2(1og2n+log b)) arithmetic operations or O( n(log2n+log b) parallel steps, n processors suffice in order to approximate with absolute error ~ 2mb to all the complex zeros of an n-th degree polynomial p(x) whose coefficients have moduli < 2m• If we only need such an approximation to a single zero of p(x), then O(n log n(n+log b)) arithmetic operations or O(log n(log2n+log b)) steps and n+n/(loin+log b) processors suffice (which places the latter problem in NC); furthermore if all the zeros are real, then we arrive at the bounds O(n log n(log3n+log b)), O(log n(log3+log b)), and n, respectively. Those estimates are reached in computations with O(nb) binary bits where the polynomial· has integer coefficients. This also implies a simple proof of the Boolean circuit complexity estimates for the approximation of all the complex zeros of p(x), announced in 1982 and partly proven by Schonhage. The computations rely on recursive application of Turan's proximity test of 1968, on its more recent extensions to root radii computations, and on contour integration via FFT within our modifications of the known geometric constructions for search and exclusion.
一些多项式和Toeplitz矩阵的计算
第1部分。多项式零点的近似求值O(n2(1og2n+log b)))个算术运算或O(n (log2n+log b)个并行步骤,n个处理器足以以绝对误差约2mb的方式逼近系数模量< 2m的n次多项式p(x)的所有复零。那么O(n log n(n+log b))个算术运算或O(log n(log2n+log b))个步骤和n+n/(loin+log b)个处理器就足够了(这将后一个问题置于NC中);更进一步,如果所有的0都是实数,那么我们就分别得到了O(n log n(log3n+log b)), O(log n(log3+log b))和n的边界。这些估计是在O(nb)二进制位的计算中达到的,其中多项式·具有整数系数。这也暗示了对布尔电路复杂度估计的一个简单证明,该估计用于p(x)的所有复零的近似值,该证明于1982年公布,并由Schonhage部分证明。计算依赖于图兰1968年的邻近测试的递归应用,以及它最近对根半径计算的扩展,以及在我们对已知几何结构的修改中通过FFT进行搜索和排除的轮廓积分。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信