Object Identification and Localization of Visual Explanation for Weapon Detection

Narit Hnoohom, Pitchaya Chotivatunyu, Sumeth Yuenyong, K. Wongpatikaseree, S. Mekruksavanich, A. Jitpattanakul
{"title":"Object Identification and Localization of Visual Explanation for Weapon Detection","authors":"Narit Hnoohom, Pitchaya Chotivatunyu, Sumeth Yuenyong, K. Wongpatikaseree, S. Mekruksavanich, A. Jitpattanakul","doi":"10.1109/RI2C56397.2022.9910301","DOIUrl":null,"url":null,"abstract":"Weapon detection is a difficult task that requires accurate identification of weapon objects in images. The object localization approach is mostly used because it combines a gradient with a convolutional layer to create a map of key locations on the image. This paper presents an Eigen-CAM method to localize and detect objects in an image for a Faster Region-based Convolutional Neural Network (Faster R-CNN) residual neural network (ResNet 50) model, giving a visual explanation. The Internet Movie Firearms Database (IMFDB) was used to train a deep learning model with the Faster R-CNN ResNet 50 model of the pre-trained PyTorch framework. Experimental results indicated that the Faster R-CNN ResNet 50 model achieved the highest mAP of 0.497 with 0.5 IoU. The Eigen-CAM method performed effectively for visual image representation.","PeriodicalId":403083,"journal":{"name":"2022 Research, Invention, and Innovation Congress: Innovative Electricals and Electronics (RI2C)","volume":"31 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-08-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 Research, Invention, and Innovation Congress: Innovative Electricals and Electronics (RI2C)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/RI2C56397.2022.9910301","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Weapon detection is a difficult task that requires accurate identification of weapon objects in images. The object localization approach is mostly used because it combines a gradient with a convolutional layer to create a map of key locations on the image. This paper presents an Eigen-CAM method to localize and detect objects in an image for a Faster Region-based Convolutional Neural Network (Faster R-CNN) residual neural network (ResNet 50) model, giving a visual explanation. The Internet Movie Firearms Database (IMFDB) was used to train a deep learning model with the Faster R-CNN ResNet 50 model of the pre-trained PyTorch framework. Experimental results indicated that the Faster R-CNN ResNet 50 model achieved the highest mAP of 0.497 with 0.5 IoU. The Eigen-CAM method performed effectively for visual image representation.
武器探测目视解释的目标识别与定位
武器检测是一项艰巨的任务,需要在图像中准确识别武器目标。对象定位方法主要使用,因为它结合了梯度和卷积层来创建图像上关键位置的地图。本文提出了一种基于快速区域卷积神经网络(Faster R-CNN)残差神经网络(ResNet 50)模型的特征- cam方法来定位和检测图像中的目标,并给出了可视化的解释。使用Internet Movie Firearms Database (IMFDB)与预训练PyTorch框架的Faster R-CNN ResNet 50模型训练深度学习模型。实验结果表明,Faster R-CNN ResNet 50模型在0.5 IoU时获得了最高的mAP值0.497。Eigen-CAM方法对视觉图像表示效果较好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信