Determining the Orientation of Low Resolution Images of a De-Bruijn Tracking Pattern with a CNN

Andreas Schmid, Raphael Wimmer, S. Lippl
{"title":"Determining the Orientation of Low Resolution Images of a De-Bruijn Tracking Pattern with a CNN","authors":"Andreas Schmid, Raphael Wimmer, S. Lippl","doi":"10.1145/3532719.3543259","DOIUrl":null,"url":null,"abstract":"Inside-out optical 2D tracking of tangible objects on a surface oftentimes uses a high-resolution pattern printed on the surface. While De-Bruijn-torus patterns offer maximum information density, their orientation must be known to decode them. Determining the orientation is challenging for patterns with very fine details; traditional algorithms, such as Hough Lines, do not work reliably. We show that a convolutional neural network can reliably determine the orientation of quasi-random bitmaps with 6 × 6 pixels per block within 36 × 36 pixel images taken by a mouse sensor. Mean error rate is below 2°. Furthermore, our model outperformed Hough Lines in a test with arbitrarily rotated low-resolution rectangles. This implies that CNN-based rotation-detection might also be applicable for more general use cases.","PeriodicalId":289790,"journal":{"name":"ACM SIGGRAPH 2022 Posters","volume":"161 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-07-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM SIGGRAPH 2022 Posters","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3532719.3543259","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Inside-out optical 2D tracking of tangible objects on a surface oftentimes uses a high-resolution pattern printed on the surface. While De-Bruijn-torus patterns offer maximum information density, their orientation must be known to decode them. Determining the orientation is challenging for patterns with very fine details; traditional algorithms, such as Hough Lines, do not work reliably. We show that a convolutional neural network can reliably determine the orientation of quasi-random bitmaps with 6 × 6 pixels per block within 36 × 36 pixel images taken by a mouse sensor. Mean error rate is below 2°. Furthermore, our model outperformed Hough Lines in a test with arbitrarily rotated low-resolution rectangles. This implies that CNN-based rotation-detection might also be applicable for more general use cases.
用CNN确定低分辨率De-Bruijn跟踪模式图像的方向
表面上有形物体的由内到外的光学二维跟踪通常使用打印在表面上的高分辨率图案。虽然De-Bruijn-torus模式提供了最大的信息密度,但必须知道它们的方向才能解码它们。对于具有非常精细细节的模式来说,确定方向是具有挑战性的;传统的算法,如霍夫线,不能可靠地工作。我们证明了卷积神经网络可以在鼠标传感器拍摄的36 × 36像素图像中可靠地确定准随机位图的方向,每个块6 × 6像素。平均错误率低于2°。此外,我们的模型在任意旋转低分辨率矩形的测试中优于霍夫线。这意味着基于cnn的旋转检测可能也适用于更一般的用例。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信