Fast Computation of Vertex Normals for Linearly Deforming Meshes

Jindrich Parus, I. Kolingerová, A. Hast
{"title":"Fast Computation of Vertex Normals for Linearly Deforming Meshes","authors":"Jindrich Parus, I. Kolingerová, A. Hast","doi":"10.1080/2151237X.2007.10129249","DOIUrl":null,"url":null,"abstract":"In this paper, we deal with shading of linearly deforming triangular meshes that deform in time so that each vertex travels independently along its linear trajectory. We will show how the vertex normal can be computed efficiently for an arbitrary triangular polygon mesh under linear deformation using the weighting scheme referred to by Jin et al. as \"mean weighted by areas of adjacent triangles.\" Our computation approach is also faster than simple normal recomputation. Moreover, it is more accurate than the usual linear interpolation. The proposed approach is general enough to be used to compute the vertex normal for any number of adjacent faces.","PeriodicalId":318334,"journal":{"name":"Journal of Graphics Tools","volume":"32 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Graphics Tools","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/2151237X.2007.10129249","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

In this paper, we deal with shading of linearly deforming triangular meshes that deform in time so that each vertex travels independently along its linear trajectory. We will show how the vertex normal can be computed efficiently for an arbitrary triangular polygon mesh under linear deformation using the weighting scheme referred to by Jin et al. as "mean weighted by areas of adjacent triangles." Our computation approach is also faster than simple normal recomputation. Moreover, it is more accurate than the usual linear interpolation. The proposed approach is general enough to be used to compute the vertex normal for any number of adjacent faces.
线性变形网格顶点法线的快速计算
在本文中,我们处理线性变形三角形网格的阴影,这些网格随时间变形,使每个顶点沿其线性轨迹独立移动。我们将展示如何使用Jin等人称为“相邻三角形面积的平均加权”的加权方案有效地计算线性变形下任意三角形多边形网格的顶点法线。我们的计算方法也比简单的普通重计算快。此外,它比通常的线性插值更精确。所提出的方法具有足够的通用性,可用于计算任意数量的相邻面的顶点法线。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信