Distributed recursive composite hypothesis testing: Imperfect communication

Anit Kumar Sahu, S. Kar
{"title":"Distributed recursive composite hypothesis testing: Imperfect communication","authors":"Anit Kumar Sahu, S. Kar","doi":"10.1109/ISIT.2016.7541785","DOIUrl":null,"url":null,"abstract":"This paper focuses on the problem of distributed composite hypothesis testing in a noisy network of sparsely interconnected agents in which a pair of agents exchange information over an additive noise channel. The network objective is to test a simple null hypothesis against a composite alternative concerning the state of the field, modeled as a vector of (continuous) unknown parameters determining the parametric family of probability measures induced on the agents' observation spaces under the hypotheses. A recursive generalized likelihood ratio test (GLRT) type algorithm in a distributed setup of the consensus+innovations form is proposed, in which the agents update their parameter estimates and decision statistics by simultaneously processing the latest sensed information (innovations) and information obtained from neighboring agents (consensus). This paper characterizes the conditions and the testing algorithm design parameters which ensure that the probabilities of decision errors decay to zero asymptotically in the large sample limit.","PeriodicalId":198767,"journal":{"name":"2016 IEEE International Symposium on Information Theory (ISIT)","volume":"72 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-08-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE International Symposium on Information Theory (ISIT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISIT.2016.7541785","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

This paper focuses on the problem of distributed composite hypothesis testing in a noisy network of sparsely interconnected agents in which a pair of agents exchange information over an additive noise channel. The network objective is to test a simple null hypothesis against a composite alternative concerning the state of the field, modeled as a vector of (continuous) unknown parameters determining the parametric family of probability measures induced on the agents' observation spaces under the hypotheses. A recursive generalized likelihood ratio test (GLRT) type algorithm in a distributed setup of the consensus+innovations form is proposed, in which the agents update their parameter estimates and decision statistics by simultaneously processing the latest sensed information (innovations) and information obtained from neighboring agents (consensus). This paper characterizes the conditions and the testing algorithm design parameters which ensure that the probabilities of decision errors decay to zero asymptotically in the large sample limit.
分布式递归复合假设检验:不完全沟通
本文研究了一个由稀疏互连的智能体组成的噪声网络中的分布式复合假设检验问题,其中一对智能体通过加性噪声通道交换信息。该网络的目标是测试一个简单的零假设,反对一个关于领域状态的复合替代,建模为(连续)未知参数的向量,确定在假设下智能体的观察空间上诱导的概率度量的参数族。提出了一种基于共识+创新形式的分布式设置下的递归广义似然比检验(GLRT)算法,该算法通过同时处理最新感知信息(创新)和从相邻智能体(共识)获取的信息来更新其参数估计和决策统计。本文描述了在大样本极限下决策错误概率渐近衰减到零的条件和测试算法设计参数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信