Efficient Utilization of Image Fusion and Interpolation for Medical Image Diagnosis applications

Randa Ali, Taha E. Taha, Noha A. El-Hag, Moawad I.Dessoky, Walid El- Shafai, Fathi E. Abd El- samie
{"title":"Efficient Utilization of Image Fusion and Interpolation for Medical Image Diagnosis applications","authors":"Randa Ali, Taha E. Taha, Noha A. El-Hag, Moawad I.Dessoky, Walid El- Shafai, Fathi E. Abd El- samie","doi":"10.21608/mjeer.2023.283902","DOIUrl":null,"url":null,"abstract":"— This paper presents a framework for medical image diagnosis of brain tumors. This framework comprises image fusion, image interpolation and image segmentation. The objective of the fusion process is to integerate information from MR and CT images in a single image for better representation of tumors. The fusion is implemented with one of the Dual tree complex wavelet transform (DT-CWT), Discrete wavelet transform (DWT) and principal component analysis (PCA) algorithms to investigate the best one for the application of interest. Interpolation is implemented with one of both polynomial and inverse interpolation techniques. Inverse techniques including linear minimum mean square error (LMMSE) and regularized interpolation are preferred to polynomial technique. After that, threshold segmentation is implemented to isolate the tumor region. Different evolution metrics are used such as accuracy, sensitivity , precision , specifity ,…….. are used to assess the proposed framework. Simulation results prove that the frameworking depending on DWT fusion gives the best results over the existing published techniques","PeriodicalId":218019,"journal":{"name":"Menoufia Journal of Electronic Engineering Research","volume":"70 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Menoufia Journal of Electronic Engineering Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21608/mjeer.2023.283902","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

— This paper presents a framework for medical image diagnosis of brain tumors. This framework comprises image fusion, image interpolation and image segmentation. The objective of the fusion process is to integerate information from MR and CT images in a single image for better representation of tumors. The fusion is implemented with one of the Dual tree complex wavelet transform (DT-CWT), Discrete wavelet transform (DWT) and principal component analysis (PCA) algorithms to investigate the best one for the application of interest. Interpolation is implemented with one of both polynomial and inverse interpolation techniques. Inverse techniques including linear minimum mean square error (LMMSE) and regularized interpolation are preferred to polynomial technique. After that, threshold segmentation is implemented to isolate the tumor region. Different evolution metrics are used such as accuracy, sensitivity , precision , specifity ,…….. are used to assess the proposed framework. Simulation results prove that the frameworking depending on DWT fusion gives the best results over the existing published techniques
图像融合与插值在医学图像诊断中的高效应用
本文提出了一种脑肿瘤的医学影像诊断框架。该框架包括图像融合、图像插值和图像分割。融合过程的目的是将来自MR和CT图像的信息整合到一张图像中,以便更好地表示肿瘤。利用对偶树复小波变换(DT-CWT)、离散小波变换(DWT)和主成分分析(PCA)算法中的一种进行融合,找出最适合应用的算法。插值是用多项式插值和逆插值技术中的一种来实现的。包括线性最小均方误差(LMMSE)和正则化插值在内的逆技术优于多项式技术。然后进行阈值分割,隔离肿瘤区域。使用不同的进化指标,如准确性,灵敏度,精度,特异性,........用于评估建议的框架。仿真结果表明,基于DWT融合的框架比现有的技术具有更好的效果
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信