Constantinos Costa, Andreas Charalampous, Andreas Konstantinidis, D. Zeinalipour-Yazti, M. Mokbel
{"title":"Decaying Telco Big Data with Data Postdiction","authors":"Constantinos Costa, Andreas Charalampous, Andreas Konstantinidis, D. Zeinalipour-Yazti, M. Mokbel","doi":"10.1109/MDM.2018.00027","DOIUrl":null,"url":null,"abstract":"In this paper, we present a novel decaying operator for Telco Big Data (TBD), coined TBD-DP (Data Postdiction). Unlike data prediction, which aims to make a statement about the future value of some tuple, our formulated data postdiction term, aims to make a statement about the past value of some tuple, which does not exist anymore as it had to be deleted to free up disk space. TBD-DP relies on existing Machine Learning (ML) algorithms to abstract TBD into compact models that can be stored and queried when necessary. Our proposed TBD-DP operator has the following two conceptual phases: (i) in an offline phase, it utilizes a LSTM-based hierarchical ML algorithm to learn a tree of models (coined TBD-DP tree) over time and space; (ii) in an online phase, it uses the TBD-DP tree to recover data within a certain accuracy. In our experimental setup, we measure the efficiency of the proposed operator using a ~10GB anonymized real telco network trace and our experimental results in Tensorflow over HDFS are extremely encouraging as they show that TBD-DP saves an order of magnitude storage space while maintaining a high accuracy on the recovered data.","PeriodicalId":205319,"journal":{"name":"2018 19th IEEE International Conference on Mobile Data Management (MDM)","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 19th IEEE International Conference on Mobile Data Management (MDM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MDM.2018.00027","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5
Abstract
In this paper, we present a novel decaying operator for Telco Big Data (TBD), coined TBD-DP (Data Postdiction). Unlike data prediction, which aims to make a statement about the future value of some tuple, our formulated data postdiction term, aims to make a statement about the past value of some tuple, which does not exist anymore as it had to be deleted to free up disk space. TBD-DP relies on existing Machine Learning (ML) algorithms to abstract TBD into compact models that can be stored and queried when necessary. Our proposed TBD-DP operator has the following two conceptual phases: (i) in an offline phase, it utilizes a LSTM-based hierarchical ML algorithm to learn a tree of models (coined TBD-DP tree) over time and space; (ii) in an online phase, it uses the TBD-DP tree to recover data within a certain accuracy. In our experimental setup, we measure the efficiency of the proposed operator using a ~10GB anonymized real telco network trace and our experimental results in Tensorflow over HDFS are extremely encouraging as they show that TBD-DP saves an order of magnitude storage space while maintaining a high accuracy on the recovered data.