Depression Estimation Using Audiovisual Features and Fisher Vector Encoding

AVEC '14 Pub Date : 2014-11-07 DOI:10.1145/2661806.2661817
V. Jain, J. Crowley, A. Dey, A. Lux
{"title":"Depression Estimation Using Audiovisual Features and Fisher Vector Encoding","authors":"V. Jain, J. Crowley, A. Dey, A. Lux","doi":"10.1145/2661806.2661817","DOIUrl":null,"url":null,"abstract":"We investigate the use of two visual descriptors: Local Binary Patterns-Three Orthogonal Planes(LBP-TOP) and Dense Trajectories for depression assessment on the AVEC 2014 challenge dataset. We encode the visual information generated by the two descriptors using Fisher Vector encoding which has been shown to be one of the best performing methods to encode visual data for image classification. We also incorporate audio features in the final system to introduce multiple input modalities. The results produced using Linear Support Vector regression outperform the baseline method.","PeriodicalId":318508,"journal":{"name":"AVEC '14","volume":"111 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"63","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"AVEC '14","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2661806.2661817","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 63

Abstract

We investigate the use of two visual descriptors: Local Binary Patterns-Three Orthogonal Planes(LBP-TOP) and Dense Trajectories for depression assessment on the AVEC 2014 challenge dataset. We encode the visual information generated by the two descriptors using Fisher Vector encoding which has been shown to be one of the best performing methods to encode visual data for image classification. We also incorporate audio features in the final system to introduce multiple input modalities. The results produced using Linear Support Vector regression outperform the baseline method.
基于视听特征和Fisher矢量编码的降噪估计
我们研究了在AVEC 2014挑战数据集上使用两种视觉描述符:局部二元模式-三个正交平面(LBP-TOP)和密集轨迹来评估抑郁。我们使用Fisher向量编码对两个描述符生成的视觉信息进行编码,Fisher向量编码已被证明是编码图像分类视觉数据的最佳方法之一。我们还在最终系统中加入了音频功能,以引入多种输入模式。使用线性支持向量回归产生的结果优于基线方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信