Human Activity Classification Using mm-Wave FMCW Radar by Improved Representation Learning

Thomas Stadelmayer, Markus Stadelmayer, Avik Santra, R. Weigel, F. Lurz
{"title":"Human Activity Classification Using mm-Wave FMCW Radar by Improved Representation Learning","authors":"Thomas Stadelmayer, Markus Stadelmayer, Avik Santra, R. Weigel, F. Lurz","doi":"10.1145/3412060.3418430","DOIUrl":null,"url":null,"abstract":"The paper proposes a novel Euclidean distance softmax layer for radar-based human activity classification. The method aims to overcome the angular dependency of classical softmax approaches. Through the freedoms thus gained, the activity classes can be distributed freely within the entire embedded feature space, due to which the dimension of the embeddings and the whole neural network size can be reduced. The performance of our novel deep learning architecture is evaluated for 60 GHz mm-wave radar sensor-based human activity classification. The results show that the proposed approach increases the robustness against random and unknown movements compared to state-of-art representation learning techniques.","PeriodicalId":284872,"journal":{"name":"Proceedings of the 4th ACM Workshop on Millimeter-Wave Networks and Sensing Systems","volume":"35 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 4th ACM Workshop on Millimeter-Wave Networks and Sensing Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3412060.3418430","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

Abstract

The paper proposes a novel Euclidean distance softmax layer for radar-based human activity classification. The method aims to overcome the angular dependency of classical softmax approaches. Through the freedoms thus gained, the activity classes can be distributed freely within the entire embedded feature space, due to which the dimension of the embeddings and the whole neural network size can be reduced. The performance of our novel deep learning architecture is evaluated for 60 GHz mm-wave radar sensor-based human activity classification. The results show that the proposed approach increases the robustness against random and unknown movements compared to state-of-art representation learning techniques.
基于改进表示学习的毫米波FMCW雷达人类活动分类
提出了一种新的欧几里得距离软极大值层,用于基于雷达的人类活动分类。该方法旨在克服经典softmax方法的角度依赖性。通过获得的自由度,活动类可以在整个嵌入特征空间内自由分布,从而减小了嵌入的维数和整个神经网络的大小。我们的新型深度学习架构的性能被评估为基于60 GHz毫米波雷达传感器的人类活动分类。结果表明,与最先进的表示学习技术相比,所提出的方法提高了对随机和未知运动的鲁棒性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信