Xinnian Zheng, Pradeep Ravikumar, L. John, A. Gerstlauer
{"title":"Learning-based analytical cross-platform performance prediction","authors":"Xinnian Zheng, Pradeep Ravikumar, L. John, A. Gerstlauer","doi":"10.1109/SAMOS.2015.7363659","DOIUrl":null,"url":null,"abstract":"As modern processors are becoming increasingly complex, fast and accurate performance prediction is crucial during the early phases of hardware and software co-development. To accurately and efficiently predict the performance of a given software workload is, however, a challenging problem. Traditional cycle-accurate simulation is often too slow, while analytical models are not sufficiently accurate or still require target-specific execution statistics that may be slow or difficult to obtain. In this paper, we propose a novel learning-based approach for synthesizing analytical models that can accurately predict the performance of a workload on a target platform from various performance statistics obtained directly on a host platform using built-in hardware counters. Our learning approach relies on a one-time training phase using a cycle-accurate reference of the chosen target processor. We train our models on over 15,000 program instances from the ACM-ICPC programming contest database, and demonstrate the prediction accuracy on standard benchmark suites. Result show that our approach achieves on average more than 90% accuracy at 160× the speed compared to a cycle-accurate reference simulation.","PeriodicalId":346802,"journal":{"name":"2015 International Conference on Embedded Computer Systems: Architectures, Modeling, and Simulation (SAMOS)","volume":"79 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-07-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"30","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 International Conference on Embedded Computer Systems: Architectures, Modeling, and Simulation (SAMOS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SAMOS.2015.7363659","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 30
Abstract
As modern processors are becoming increasingly complex, fast and accurate performance prediction is crucial during the early phases of hardware and software co-development. To accurately and efficiently predict the performance of a given software workload is, however, a challenging problem. Traditional cycle-accurate simulation is often too slow, while analytical models are not sufficiently accurate or still require target-specific execution statistics that may be slow or difficult to obtain. In this paper, we propose a novel learning-based approach for synthesizing analytical models that can accurately predict the performance of a workload on a target platform from various performance statistics obtained directly on a host platform using built-in hardware counters. Our learning approach relies on a one-time training phase using a cycle-accurate reference of the chosen target processor. We train our models on over 15,000 program instances from the ACM-ICPC programming contest database, and demonstrate the prediction accuracy on standard benchmark suites. Result show that our approach achieves on average more than 90% accuracy at 160× the speed compared to a cycle-accurate reference simulation.