Unsupervised Fall Detection on Edge Devices

Takuya Nakabayashi, H. Saito
{"title":"Unsupervised Fall Detection on Edge Devices","authors":"Takuya Nakabayashi, H. Saito","doi":"10.23919/MVA57639.2023.10215993","DOIUrl":null,"url":null,"abstract":"Automatic fall detection is a crucial task in healthcare as falls pose a significant risk to the health of elderly individuals. This paper presents a lightweight acceleration-based fall detection method that can be implemented on edge devices. The proposed method uses Autoencoders, a type of unsupervised learning, within the framework of anomaly detection, allowing for network training without requiring extensive labeled fall data. One of the challenges in fall detection is the difficulty in collecting fall data. However, our proposed method can overcome this limitation by training the neural network without fall data, using the anomaly detection framework of Autoencoders. Additionally, this method employs an extremely lightweight Autoencoder that can run independently on an edge device, eliminating the need to transmit data to a server and minimizing privacy concerns. We conducted experiments comparing the performance of our proposed method with that of a baseline method using a unique fall detection dataset. Our results confirm that our method outperforms the baseline method in detecting falls with higher accuracy.","PeriodicalId":338734,"journal":{"name":"2023 18th International Conference on Machine Vision and Applications (MVA)","volume":"79 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 18th International Conference on Machine Vision and Applications (MVA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/MVA57639.2023.10215993","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Automatic fall detection is a crucial task in healthcare as falls pose a significant risk to the health of elderly individuals. This paper presents a lightweight acceleration-based fall detection method that can be implemented on edge devices. The proposed method uses Autoencoders, a type of unsupervised learning, within the framework of anomaly detection, allowing for network training without requiring extensive labeled fall data. One of the challenges in fall detection is the difficulty in collecting fall data. However, our proposed method can overcome this limitation by training the neural network without fall data, using the anomaly detection framework of Autoencoders. Additionally, this method employs an extremely lightweight Autoencoder that can run independently on an edge device, eliminating the need to transmit data to a server and minimizing privacy concerns. We conducted experiments comparing the performance of our proposed method with that of a baseline method using a unique fall detection dataset. Our results confirm that our method outperforms the baseline method in detecting falls with higher accuracy.
边缘设备的无监督跌倒检测
跌倒自动检测是医疗保健中的一项重要任务,因为跌倒对老年人的健康构成了重大风险。本文提出了一种可在边缘设备上实现的基于加速度的轻量跌倒检测方法。所提出的方法在异常检测框架内使用自动编码器(一种无监督学习),允许网络训练而不需要大量标记的下降数据。跌倒检测面临的挑战之一是收集跌倒数据的困难。然而,我们提出的方法可以通过使用Autoencoders的异常检测框架,在没有跌倒数据的情况下训练神经网络来克服这一限制。此外,这种方法采用了一个非常轻量级的自动编码器,可以在边缘设备上独立运行,消除了将数据传输到服务器的需要,并最大限度地减少了隐私问题。我们使用一个独特的跌倒检测数据集进行了实验,比较了我们提出的方法与基线方法的性能。我们的结果证实,我们的方法优于基线方法,以更高的精度检测跌倒。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信