Application of neural networks to direct stability analysis of power systems

D. Klapper, H. Othman, Y. Akimoto, H. Tanaka, J. Yoshizawa
{"title":"Application of neural networks to direct stability analysis of power systems","authors":"D. Klapper, H. Othman, Y. Akimoto, H. Tanaka, J. Yoshizawa","doi":"10.1109/ANN.1993.264317","DOIUrl":null,"url":null,"abstract":"The feasibility of designing neural networks capable of computing the critical clearing times of power system faults is explored. Two distinct approaches are investigated, the patter recognition approach and the optimization approach. The theory of direct stability analysis of power systems is utilized is designing he input features of the pattern recognition approach, and the structure of the Hopfield optimization approach.<<ETX>>","PeriodicalId":121897,"journal":{"name":"[1993] Proceedings of the Second International Forum on Applications of Neural Networks to Power Systems","volume":"50 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1993-04-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"[1993] Proceedings of the Second International Forum on Applications of Neural Networks to Power Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ANN.1993.264317","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

The feasibility of designing neural networks capable of computing the critical clearing times of power system faults is explored. Two distinct approaches are investigated, the patter recognition approach and the optimization approach. The theory of direct stability analysis of power systems is utilized is designing he input features of the pattern recognition approach, and the structure of the Hopfield optimization approach.<>
神经网络在电力系统直接稳定性分析中的应用
探讨了设计神经网络计算电力系统故障关键清除时间的可行性。研究了两种不同的方法:模式识别方法和优化方法。利用电力系统直接稳定性分析理论,设计了模式识别方法的输入特征和Hopfield优化方法的结构。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信