On the Uncertainty in IoT-enabled Business Processes using Artificial Intelligence Components

M. Hesenius, Nils Schwenzfeier, Ole Meyer, V. Gruhn
{"title":"On the Uncertainty in IoT-enabled Business Processes using Artificial Intelligence Components","authors":"M. Hesenius, Nils Schwenzfeier, Ole Meyer, V. Gruhn","doi":"10.1109/ICSS55994.2022.00021","DOIUrl":null,"url":null,"abstract":"With the increased availability of solutions using Artificial Intelligence and Machine Learning, more and more business processes are based on technical components delivering probabilistic results. A prominent examples are applications from the Internet of Things that heavily rely on sensor information and data stream processing. Another trend that is gaining more traction is the use of No- and Low-Code-Platforms to create applications. Such approaches focus on defining the business logic via business process modeling and automatically create a corresponding executable application. We argue that using components based on Artificial Intelligence and Machine Learning in such applications requires to handle uncertainty resulting from probabilistic results accordingly. This means to introduce, e.g., fallback mechanisms if results delivered from composing using Artificial Intelligence err into modeled business processes. In this position paper, we discuss scenarios, arising problems, and potential solutions.","PeriodicalId":327964,"journal":{"name":"2022 International Conference on Service Science (ICSS)","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 International Conference on Service Science (ICSS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICSS55994.2022.00021","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

With the increased availability of solutions using Artificial Intelligence and Machine Learning, more and more business processes are based on technical components delivering probabilistic results. A prominent examples are applications from the Internet of Things that heavily rely on sensor information and data stream processing. Another trend that is gaining more traction is the use of No- and Low-Code-Platforms to create applications. Such approaches focus on defining the business logic via business process modeling and automatically create a corresponding executable application. We argue that using components based on Artificial Intelligence and Machine Learning in such applications requires to handle uncertainty resulting from probabilistic results accordingly. This means to introduce, e.g., fallback mechanisms if results delivered from composing using Artificial Intelligence err into modeled business processes. In this position paper, we discuss scenarios, arising problems, and potential solutions.
关于使用人工智能组件的物联网业务流程中的不确定性
随着使用人工智能和机器学习的解决方案的可用性增加,越来越多的业务流程基于提供概率结果的技术组件。一个突出的例子是严重依赖传感器信息和数据流处理的物联网应用。另一个越来越受关注的趋势是使用无代码平台和低代码平台来创建应用程序。这种方法侧重于通过业务流程建模来定义业务逻辑,并自动创建相应的可执行应用程序。我们认为,在此类应用中使用基于人工智能和机器学习的组件需要相应地处理由概率结果引起的不确定性。这意味着引入,例如,如果使用人工智能组合交付的结果在建模的业务流程中出错,则引入回退机制。在这份立场文件中,我们讨论了场景、出现的问题和潜在的解决方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信