Harnessing Extreme Heterogeneity for Ocean Modeling with Tensors

Li Tang, Philip W. Jones, S. Pakin
{"title":"Harnessing Extreme Heterogeneity for Ocean Modeling with Tensors","authors":"Li Tang, Philip W. Jones, S. Pakin","doi":"10.1145/3587278.3595645","DOIUrl":null,"url":null,"abstract":"Specialized processors designed to accelerate tensor operations are evolving faster than conventional processors. This trend of architectural innovations greatly benefits artificial intelligence (AI) workloads. However, it is unknown how well AI-optimized accelerators can be retargeted to scientific applications. To answer this question we explore (1) whether a typical scientific modeling kernel can be mapped efficiently to tensor operations and (2) whether this approach is portable across diverse processors and AI accelerators. In this paper we implement two versions of tracer advection in an ocean-modeling application using PyTorch and evaluate these on one CPU, two GPUs, and Google's TPU. Our findings are that scientific modeling can observe both a performance boost and improved portability by mapping key computational kernels to tensor operations.","PeriodicalId":169613,"journal":{"name":"Proceedings of the 2nd International Workshop on Extreme Heterogeneity Solutions","volume":"18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-02-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2nd International Workshop on Extreme Heterogeneity Solutions","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3587278.3595645","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Specialized processors designed to accelerate tensor operations are evolving faster than conventional processors. This trend of architectural innovations greatly benefits artificial intelligence (AI) workloads. However, it is unknown how well AI-optimized accelerators can be retargeted to scientific applications. To answer this question we explore (1) whether a typical scientific modeling kernel can be mapped efficiently to tensor operations and (2) whether this approach is portable across diverse processors and AI accelerators. In this paper we implement two versions of tracer advection in an ocean-modeling application using PyTorch and evaluate these on one CPU, two GPUs, and Google's TPU. Our findings are that scientific modeling can observe both a performance boost and improved portability by mapping key computational kernels to tensor operations.
利用张量模拟海洋的极端非均质性
专为加速张量运算而设计的专用处理器比传统处理器发展得更快。这种架构创新的趋势极大地有利于人工智能(AI)工作负载。然而,目前尚不清楚人工智能优化的加速器如何能够重新定位于科学应用。为了回答这个问题,我们探讨了(1)一个典型的科学建模内核是否可以有效地映射到张量操作;(2)这种方法是否可以移植到不同的处理器和人工智能加速器上。在本文中,我们使用PyTorch在海洋建模应用程序中实现了两个版本的示踪平流,并在一个CPU,两个gpu和Google的TPU上对它们进行了评估。我们的发现是,通过将关键的计算内核映射到张量操作,科学建模可以观察到性能的提升和可移植性的改善。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信