{"title":"Thermal Properties of Laser Reduced Graphene Oxide Films","authors":"Chengqun Yu, Fei Yang, Johan Liu, Yong Zhang","doi":"10.23919/empc53418.2021.9585006","DOIUrl":null,"url":null,"abstract":"In recent years, laser-reduced graphene oxide (LRGO) has received widespread interest, however, the thermal properties of graphene films obtained by laser reduction of GO are rarely reported. In this paper, a pulsed laser was used to reduce the prepared GO films. The obtained LRGO films were characterized by scanning electron microscopy (SEM), Raman spectroscopy, X-ray photoelectron spectroscopy (XPS). The thermal diffusivity of the LRGO was measured as 7.3 mm2/s, higher than that of GO measured as 5.9 mm2/s. The heating performance of LRGO was performed under different DC voltages and the results show that the temperature can reach up to 91 °C with a response time of 14 s under the voltage of 18 V. The excellent electrothermal performance of LRGO films indicate that the LRGO films are promising as heating elements for various application such as defoggers.","PeriodicalId":348887,"journal":{"name":"2021 23rd European Microelectronics and Packaging Conference & Exhibition (EMPC)","volume":"48 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 23rd European Microelectronics and Packaging Conference & Exhibition (EMPC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/empc53418.2021.9585006","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
In recent years, laser-reduced graphene oxide (LRGO) has received widespread interest, however, the thermal properties of graphene films obtained by laser reduction of GO are rarely reported. In this paper, a pulsed laser was used to reduce the prepared GO films. The obtained LRGO films were characterized by scanning electron microscopy (SEM), Raman spectroscopy, X-ray photoelectron spectroscopy (XPS). The thermal diffusivity of the LRGO was measured as 7.3 mm2/s, higher than that of GO measured as 5.9 mm2/s. The heating performance of LRGO was performed under different DC voltages and the results show that the temperature can reach up to 91 °C with a response time of 14 s under the voltage of 18 V. The excellent electrothermal performance of LRGO films indicate that the LRGO films are promising as heating elements for various application such as defoggers.