Ensemble Based Gustafson Kessel Fuzzy Clustering

Achmad Fauzi Bagus Firmansyah, S. Pramana
{"title":"Ensemble Based Gustafson Kessel Fuzzy Clustering","authors":"Achmad Fauzi Bagus Firmansyah, S. Pramana","doi":"10.21108/JDSA.2018.1.6","DOIUrl":null,"url":null,"abstract":"Fuzzy clustering is a clustering method whcih allows an object to belong to two or more cluster by combining hard-clustering and fuzzy membership matrix. Two popular algorithms used in fuzzy clustering are Fuzzy C-Means (FCM) and Gustafson Kessel (GK). The FCM use Euclideans distance for determining cluster membership, while GK use Fuzzy Covariance Matrix that considering covariance between variables. Although GK perform better, it has some drawbacks on handling linearly correlated data, and as FCM the algorithm produce unstable result due to random initialization. These drawbacks can be overcame by using improved covariance estimation and cluster ensemble, respectively. This research presents the implementation of improved covariance estimation and cluster ensemble on GK method and compare it with FCM-Ensemble.","PeriodicalId":147894,"journal":{"name":"Journal of Data Science and Its Applications","volume":"18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Data Science and Its Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21108/JDSA.2018.1.6","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

Abstract

Fuzzy clustering is a clustering method whcih allows an object to belong to two or more cluster by combining hard-clustering and fuzzy membership matrix. Two popular algorithms used in fuzzy clustering are Fuzzy C-Means (FCM) and Gustafson Kessel (GK). The FCM use Euclideans distance for determining cluster membership, while GK use Fuzzy Covariance Matrix that considering covariance between variables. Although GK perform better, it has some drawbacks on handling linearly correlated data, and as FCM the algorithm produce unstable result due to random initialization. These drawbacks can be overcame by using improved covariance estimation and cluster ensemble, respectively. This research presents the implementation of improved covariance estimation and cluster ensemble on GK method and compare it with FCM-Ensemble.
基于集成的Gustafson Kessel模糊聚类
模糊聚类是将硬聚类和模糊隶属矩阵相结合,使一个对象属于两个或多个聚类的一种聚类方法。两种常用的模糊聚类算法是模糊c均值算法(FCM)和Gustafson Kessel算法(GK)。FCM采用欧几里得距离确定聚类隶属度,GK采用考虑变量间协方差的模糊协方差矩阵。虽然GK表现较好,但在处理线性相关数据方面存在一定的缺陷,并且作为FCM算法由于随机初始化导致结果不稳定。这些缺点可以通过分别使用改进的协方差估计和聚类集成来克服。本文提出了改进的协方差估计和聚类集成在GK方法上的实现,并与FCM-Ensemble方法进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信