A Review of Plant Bioindicators in Wetlands

Subhomita Ghosh Ghosh Roy
{"title":"A Review of Plant Bioindicators in Wetlands","authors":"Subhomita Ghosh Ghosh Roy","doi":"10.21926/aeer.2204052","DOIUrl":null,"url":null,"abstract":"With the increasing human population, the protection of water resources is becoming a critical issue. Wetlands are one of the most important water resources, helping assimilate pollutants. Hence, the ecosystem integrity of wetlands is important. Plant bioindicators with phytoremediation (physiologically removing pollutants from the ecosystem by plants) capacity can be very helpful in this regard. Based on the current literature, this study specifically aims to overview plant bioindicators with phytoremediation ability. A systemic literature review (SLR) method was used to find a detailed overview of the most relevant research. A total of 70 plants were identified as bioindicators. Out of all the indicator plants, Phragmites australis, Sorghum saccharatum, Lepidium sativum, Sinapis alba, Apium nodiflorum, Arundo donax, Bolboschoenus maritimus, Juncus acutus, Nasturtium officinale, Typha angustifolia and Typha domingensis was identified as the most studied bioindicator plants. The literature review revealed that these plant bioindicators had treatment impacts on metals, nutrients, urban runoffs and wastewater. According to studies, the roots of these plant bioindicators are primarily for absorbing pollutants, which is a specific physiological property of phytoremediation. Hence, the study concluded that for specific waste materials this set of plant bioindicators can be strong contenders for understanding wetland ecosystem integrity and their physiological mechanisms of phytoremediation can provide a blueprint for developing “bioindicators” for wetlands.","PeriodicalId":198785,"journal":{"name":"Advances in Environmental and Engineering Research","volume":"57 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Environmental and Engineering Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21926/aeer.2204052","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

With the increasing human population, the protection of water resources is becoming a critical issue. Wetlands are one of the most important water resources, helping assimilate pollutants. Hence, the ecosystem integrity of wetlands is important. Plant bioindicators with phytoremediation (physiologically removing pollutants from the ecosystem by plants) capacity can be very helpful in this regard. Based on the current literature, this study specifically aims to overview plant bioindicators with phytoremediation ability. A systemic literature review (SLR) method was used to find a detailed overview of the most relevant research. A total of 70 plants were identified as bioindicators. Out of all the indicator plants, Phragmites australis, Sorghum saccharatum, Lepidium sativum, Sinapis alba, Apium nodiflorum, Arundo donax, Bolboschoenus maritimus, Juncus acutus, Nasturtium officinale, Typha angustifolia and Typha domingensis was identified as the most studied bioindicator plants. The literature review revealed that these plant bioindicators had treatment impacts on metals, nutrients, urban runoffs and wastewater. According to studies, the roots of these plant bioindicators are primarily for absorbing pollutants, which is a specific physiological property of phytoremediation. Hence, the study concluded that for specific waste materials this set of plant bioindicators can be strong contenders for understanding wetland ecosystem integrity and their physiological mechanisms of phytoremediation can provide a blueprint for developing “bioindicators” for wetlands.
湿地植物生物指标研究进展
随着人口的增长,水资源的保护已成为一个关键问题。湿地是最重要的水资源之一,有助于吸收污染物。因此,湿地生态系统的完整性至关重要。具有植物修复(植物从生态系统中生理清除污染物)能力的植物生物指示剂在这方面非常有帮助。本研究在现有文献的基础上,针对具有植物修复能力的植物生物指标进行综述。采用系统文献回顾(SLR)方法对最相关的研究进行详细概述。共鉴定出70种植物为生物指示物。在所有的指示植物中,芦苇、糖高粱、枸杞、白刺、白荆、黄花蒿、黄花蒿、海棠花、银杏花、旱金莲、麻叶树和冬叶树是研究最多的生物指示植物。文献综述表明,这些植物生物指示剂对金属、养分、城市径流和废水具有处理作用。研究表明,这些植物的根系主要是吸收污染物,这是植物修复的一种特殊生理特性。因此,本研究认为,对于特定的废弃物,这套植物生物指示剂可以成为了解湿地生态系统完整性及其植物修复生理机制的有力争夺者,为开发湿地“生物指示剂”提供了蓝图。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信