Regularization, adaptation, and non-independent features improve hidden conditional random fields for phone classification

Yun-Hsuan Sung, Constantinos Boulis, Christopher D. Manning, Dan Jurafsky
{"title":"Regularization, adaptation, and non-independent features improve hidden conditional random fields for phone classification","authors":"Yun-Hsuan Sung, Constantinos Boulis, Christopher D. Manning, Dan Jurafsky","doi":"10.1109/ASRU.2007.4430136","DOIUrl":null,"url":null,"abstract":"We show a number of improvements in the use of Hidden Conditional Random Fields (HCRFs) for phone classification on the TIMIT and Switchboard corpora. We first show that the use of regularization effectively prevents overfitting, improving over other methods such as early stopping. We then show that HCRFs are able to make use of non-independent features in phone classification, at least with small numbers of mixture components, while HMMs degrade due to their strong independence assumptions. Finally, we successfully apply Maximum a Posteriori adaptation to HCRFs, decreasing the phone classification error rate in the Switchboard corpus by around 1% -5% given only small amounts of adaptation data.","PeriodicalId":371729,"journal":{"name":"2007 IEEE Workshop on Automatic Speech Recognition & Understanding (ASRU)","volume":"26 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"25","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 IEEE Workshop on Automatic Speech Recognition & Understanding (ASRU)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ASRU.2007.4430136","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 25

Abstract

We show a number of improvements in the use of Hidden Conditional Random Fields (HCRFs) for phone classification on the TIMIT and Switchboard corpora. We first show that the use of regularization effectively prevents overfitting, improving over other methods such as early stopping. We then show that HCRFs are able to make use of non-independent features in phone classification, at least with small numbers of mixture components, while HMMs degrade due to their strong independence assumptions. Finally, we successfully apply Maximum a Posteriori adaptation to HCRFs, decreasing the phone classification error rate in the Switchboard corpus by around 1% -5% given only small amounts of adaptation data.
正则化、自适应和非独立特征改进了电话分类中的隐藏条件随机场
我们展示了在TIMIT和交换机语料库上使用隐藏条件随机场(HCRFs)进行电话分类的一些改进。我们首先表明,正则化的使用有效地防止了过拟合,优于其他方法,如早期停止。然后,我们表明hcrf能够在手机分类中使用非独立特征,至少在少量混合成分的情况下,而hmm由于其强独立性假设而降级。最后,我们成功地将最大后验自适应应用于HCRFs,在仅使用少量自适应数据的情况下,将总机语料库中的电话分类错误率降低了约1% -5%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信