Poisson surface reconstruction and its applications

Hugues Hoppe
{"title":"Poisson surface reconstruction and its applications","authors":"Hugues Hoppe","doi":"10.1145/1364901.1364904","DOIUrl":null,"url":null,"abstract":"Surface reconstruction from oriented points can be cast as a spatial Poisson problem. This Poisson formulation considers all the points at once, without resorting to heuristic spatial partitioning or blending, and is therefore highly resilient to data noise. Unlike radial basis function schemes, the Poisson approach allows a hierarchy of locally supported basis functions, and therefore the solution reduces to a well conditioned sparse linear system. To reconstruct detailed models in limited memory, we solve this Poisson formulation efficiently using a streaming framework. Specifically, we introduce a multilevel streaming representation, which enables efficient traversal of a sparse octree by concurrently advancing through multiple streams, one per octree level. Remarkably, for our reconstruction application, a sufficiently accurate solution to the global linear system is obtained using a single iteration of cascadic multigrid, which can be evaluated within a single multi-stream pass. Finally, we explore the application of Poisson reconstruction to the setting of multi-view stereo, to reconstruct detailed 3D models of outdoor scenes from collections of Internet images.\n This is joint work with Michael Kazhdan, Matthew Bolitho, and Randal Burns (Johns Hopkins University), and Michael Goesele, Noah Snavely, Brian Curless, and Steve Seitz (University of Washington).","PeriodicalId":216067,"journal":{"name":"Symposium on Solid and Physical Modeling","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-06-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"46","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Symposium on Solid and Physical Modeling","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1364901.1364904","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 46

Abstract

Surface reconstruction from oriented points can be cast as a spatial Poisson problem. This Poisson formulation considers all the points at once, without resorting to heuristic spatial partitioning or blending, and is therefore highly resilient to data noise. Unlike radial basis function schemes, the Poisson approach allows a hierarchy of locally supported basis functions, and therefore the solution reduces to a well conditioned sparse linear system. To reconstruct detailed models in limited memory, we solve this Poisson formulation efficiently using a streaming framework. Specifically, we introduce a multilevel streaming representation, which enables efficient traversal of a sparse octree by concurrently advancing through multiple streams, one per octree level. Remarkably, for our reconstruction application, a sufficiently accurate solution to the global linear system is obtained using a single iteration of cascadic multigrid, which can be evaluated within a single multi-stream pass. Finally, we explore the application of Poisson reconstruction to the setting of multi-view stereo, to reconstruct detailed 3D models of outdoor scenes from collections of Internet images. This is joint work with Michael Kazhdan, Matthew Bolitho, and Randal Burns (Johns Hopkins University), and Michael Goesele, Noah Snavely, Brian Curless, and Steve Seitz (University of Washington).
泊松曲面重构及其应用
定向点的曲面重构可以看作是空间泊松问题。这种泊松公式一次考虑所有的点,而不需要启发式的空间划分或混合,因此对数据噪声具有很高的弹性。与径向基函数方案不同,泊松方法允许局部支持基函数的层次结构,因此解简化为条件良好的稀疏线性系统。为了在有限的内存中重建详细的模型,我们使用流框架有效地解决了这个泊松公式。具体来说,我们引入了一个多级流表示,它通过并发地推进多个流(每个八叉树级别一个流)来实现对稀疏八叉树的有效遍历。值得注意的是,对于我们的重建应用,使用一次叶栅多重网格迭代获得了一个足够精确的全局线性系统解,该解可以在一次多流通道内进行评估。最后,我们探索了泊松重建在多视点立体环境下的应用,从网络图像集合中重建室外场景的详细三维模型。这是Michael Kazhdan、Matthew Bolitho和Randal Burns(约翰霍普金斯大学)以及Michael Goesele、Noah Snavely、Brian Curless和Steve Seitz(华盛顿大学)的合作成果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信