Incorporating Spatio-Temporal Smoothness for Air Quality Inference

Xiangyu Zhao, Tong Xu, Yanjie Fu, Enhong Chen, Hao Guo
{"title":"Incorporating Spatio-Temporal Smoothness for Air Quality Inference","authors":"Xiangyu Zhao, Tong Xu, Yanjie Fu, Enhong Chen, Hao Guo","doi":"10.1109/ICDM.2017.158","DOIUrl":null,"url":null,"abstract":"It is well recognized that air quality inference is of great importance for environmental protection. However, due to the limited monitoring stations and various impact factors, e.g., meteorology, traffic volume and human mobility, inference of air quality index (AQI) could be a difficult task. Recently, with the development of new ways for collecting and integrating urban, mobile, and public service data, there is a potential to leverage spatial relatedness and temporal dependencies for better AQI estimation. To that end, in this paper, we exploit a novel spatio-temporal multi-task learning strategy and develop an enhanced framework for AQI inference. Specifically, both time dependence within a single monitoring station, and spatial relatedness across all the stations will be captured, and then well trained with effective optimization to support AQI inference tasks. As air-quality related features from cross-domain data have been extracted and quantified, comprehensive experiments based on real-world datasets validate the effectiveness of our proposed framework with significant margin compared with several state-of-the-art baselines, which support the hypothesis that our spatio-temporal multi-task learning framework could better predict and interpret AQI fluctuation.","PeriodicalId":254086,"journal":{"name":"2017 IEEE International Conference on Data Mining (ICDM)","volume":"24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"17","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE International Conference on Data Mining (ICDM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDM.2017.158","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 17

Abstract

It is well recognized that air quality inference is of great importance for environmental protection. However, due to the limited monitoring stations and various impact factors, e.g., meteorology, traffic volume and human mobility, inference of air quality index (AQI) could be a difficult task. Recently, with the development of new ways for collecting and integrating urban, mobile, and public service data, there is a potential to leverage spatial relatedness and temporal dependencies for better AQI estimation. To that end, in this paper, we exploit a novel spatio-temporal multi-task learning strategy and develop an enhanced framework for AQI inference. Specifically, both time dependence within a single monitoring station, and spatial relatedness across all the stations will be captured, and then well trained with effective optimization to support AQI inference tasks. As air-quality related features from cross-domain data have been extracted and quantified, comprehensive experiments based on real-world datasets validate the effectiveness of our proposed framework with significant margin compared with several state-of-the-art baselines, which support the hypothesis that our spatio-temporal multi-task learning framework could better predict and interpret AQI fluctuation.
结合时空平滑的空气质量推断
空气质量推断对环境保护的重要性是公认的。然而,由于监测站有限,再加上气象、交通量及人员流动等因素的影响,推断空气质素指数(AQI)可能是一项困难的工作。最近,随着收集和整合城市、移动和公共服务数据的新方法的发展,有可能利用空间相关性和时间依赖性来更好地估计AQI。为此,在本文中,我们开发了一种新的时空多任务学习策略,并开发了一个增强的AQI推理框架。具体来说,将捕获单个监测站内的时间依赖性和所有监测站之间的空间相关性,然后进行有效的优化训练,以支持AQI推理任务。由于从跨域数据中提取和量化了空气质量相关特征,基于现实世界数据集的综合实验验证了我们提出的框架的有效性,与几个最先进的基线相比,这支持了我们的时空多任务学习框架可以更好地预测和解释AQI波动的假设。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信