Estimating Multivariate Conditional Models via Entropic Methods

Wenbo Cao, Craig Friedman
{"title":"Estimating Multivariate Conditional Models via Entropic Methods","authors":"Wenbo Cao, Craig Friedman","doi":"10.2139/ssrn.2379080","DOIUrl":null,"url":null,"abstract":"We introduce a new practical numerical method to estimate conditional distributions, p(y|x), where y is the value of a continuous random variable supported on R^{N_y} and x is in R^{N_x}, via the Maximum Entropy Principal. We are not aware of other practical robust methods to tackle this problem. We also introduce a new practical numerical method to estimate p(y|x), when the (multivariate) data associated with y are fat-tailed, by maximizing U-entropy, a generalization of entropy. The maximization procedures are convex programming problems and are therefore amenable to robust numerical solution. The models that result are provably robust in a certain decision-theoretic sense, and the U-entropy problem solutions are optimal with respect to Tsallis, Renyi and power f-entropy. In our approach, we do not make use of models for x or joint models of x and y. We benchmark our models against various alternative models on financial data and show that our approach produces models that outperform the benchmarks with respect to out-of-sample likelihood.","PeriodicalId":273058,"journal":{"name":"ERN: Model Construction & Estimation (Topic)","volume":"32 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ERN: Model Construction & Estimation (Topic)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.2379080","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We introduce a new practical numerical method to estimate conditional distributions, p(y|x), where y is the value of a continuous random variable supported on R^{N_y} and x is in R^{N_x}, via the Maximum Entropy Principal. We are not aware of other practical robust methods to tackle this problem. We also introduce a new practical numerical method to estimate p(y|x), when the (multivariate) data associated with y are fat-tailed, by maximizing U-entropy, a generalization of entropy. The maximization procedures are convex programming problems and are therefore amenable to robust numerical solution. The models that result are provably robust in a certain decision-theoretic sense, and the U-entropy problem solutions are optimal with respect to Tsallis, Renyi and power f-entropy. In our approach, we do not make use of models for x or joint models of x and y. We benchmark our models against various alternative models on financial data and show that our approach produces models that outperform the benchmarks with respect to out-of-sample likelihood.
用熵法估计多变量条件模型
我们引入了一种新的实用的数值方法来估计条件分布p(y|x),其中y是支持在R^{N_y}上的连续随机变量的值,x是支持在R^{N_x}上的。我们不知道还有其他切实可行的方法来解决这个问题。我们还介绍了一种新的实用数值方法来估计p(y|x),当与y相关的(多变量)数据是肥尾的,通过最大化u熵,熵的泛化。最大化过程是凸规划问题,因此适用于鲁棒数值解。所得模型在一定决策理论意义上具有可证明的鲁棒性,且u -熵问题解相对于Tsallis、Renyi和幂f-熵是最优的。在我们的方法中,我们没有使用x的模型或x和y的联合模型。我们将我们的模型与金融数据上的各种替代模型进行基准测试,并表明我们的方法产生的模型在样本外似然方面优于基准。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信