The HRS tilting process and Grothendieck hearts of t-structures

C. Parra, Manuel Saor'in
{"title":"The HRS tilting process and Grothendieck\n hearts of t-structures","authors":"C. Parra, Manuel Saor'in","doi":"10.1090/CONM/769/15416","DOIUrl":null,"url":null,"abstract":"In this paper we revisit the problem of determining when the heart of a t-structure is a Grothendieck category, with special attention to the case of the Happel-Reiten-Smalo(HSR) t-structure in the derived category of a Grothendieck category associated to a torsion pair in the latter. We revisit the HRS tilting process deriving from it a lot of information on the HRS t-structures which have a projective generator or an injective cogenerator, and obtain several bijections between classes of pairs $(\\mathcal{A},\\mathbf{t})$ consisting of an abelian category and a torsion pair in it. We use these bijections to re-prove, by different methods, a recent result of Tilting Theory and the fact that if $\\mathbf{t}=(\\mathcal{T},\\mathcal{F})$ is a torsion pair in a Grothendieck category $\\mathcal{G}$, then the heart of the associated HRS t-structure is itself a Grothendieck category if, and only if, $\\mathbf{t}$ is of finite type. We survey this last problem and recent results after its solution.","PeriodicalId":275006,"journal":{"name":"arXiv: Representation Theory","volume":"20 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Representation Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1090/CONM/769/15416","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

In this paper we revisit the problem of determining when the heart of a t-structure is a Grothendieck category, with special attention to the case of the Happel-Reiten-Smalo(HSR) t-structure in the derived category of a Grothendieck category associated to a torsion pair in the latter. We revisit the HRS tilting process deriving from it a lot of information on the HRS t-structures which have a projective generator or an injective cogenerator, and obtain several bijections between classes of pairs $(\mathcal{A},\mathbf{t})$ consisting of an abelian category and a torsion pair in it. We use these bijections to re-prove, by different methods, a recent result of Tilting Theory and the fact that if $\mathbf{t}=(\mathcal{T},\mathcal{F})$ is a torsion pair in a Grothendieck category $\mathcal{G}$, then the heart of the associated HRS t-structure is itself a Grothendieck category if, and only if, $\mathbf{t}$ is of finite type. We survey this last problem and recent results after its solution.
HRS倾斜过程与t型结构的Grothendieck心
在本文中,我们重新讨论了确定t结构的中心何时为Grothendieck范畴的问题,并特别注意了与后者中的扭对相关的Grothendieck范畴的派生范畴中的Happel-Reiten-Smalo(HSR) t结构的情况。我们重新审视了HRS的倾斜过程,从中得到了具有投影生成器或内射协生成器的HRS t结构的大量信息,并得到了由阿贝尔范畴和其中的扭转对组成的$(\mathcal{a},\mathbf{t})$类之间的几个双射。我们利用这些双射用不同的方法重新证明了倾斜理论的一个最新结果,以及如果$\mathbf{t}=(\mathcal{t},\mathcal{F})$是Grothendieck范畴$\mathcal{G}$中的一个扭转对,那么相关的HRS t结构的中心本身就是一个Grothendieck范畴当且仅当$\mathbf{t}$是有限型的。我们考察了最后一个问题和解决后的最新结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信