Knowledge Transfer-Based Multiple Data Sets Collaborative Analysis for Hyperspectral Band Selection

Jiao Shi, Xi Zhang, Zeping Zhang, Xiaoyang Li, Deyun Zhou, Yu Lei
{"title":"Knowledge Transfer-Based Multiple Data Sets Collaborative Analysis for Hyperspectral Band Selection","authors":"Jiao Shi, Xi Zhang, Zeping Zhang, Xiaoyang Li, Deyun Zhou, Yu Lei","doi":"10.1109/CCIS53392.2021.9754661","DOIUrl":null,"url":null,"abstract":"The paper presents a knowledge transfer based collaborative analysis method for hyperspectral band selection. This collaborative analysis method establishes different band selection tasks for multiple data sets, cooperatively analyzes the shared spectral spatial structure between hyperspectral data sets, so as to improve the performance of band selection tasks for each data set. The transfer probability is adjusted dynamically to realize spectral knowledge transfer effectively and improve the cooperation ability of collaborative analysis. Experiments indicate that the proposed collaborative analysis method works more efficiently than the comparison methods.","PeriodicalId":191226,"journal":{"name":"2021 IEEE 7th International Conference on Cloud Computing and Intelligent Systems (CCIS)","volume":"2015 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE 7th International Conference on Cloud Computing and Intelligent Systems (CCIS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CCIS53392.2021.9754661","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The paper presents a knowledge transfer based collaborative analysis method for hyperspectral band selection. This collaborative analysis method establishes different band selection tasks for multiple data sets, cooperatively analyzes the shared spectral spatial structure between hyperspectral data sets, so as to improve the performance of band selection tasks for each data set. The transfer probability is adjusted dynamically to realize spectral knowledge transfer effectively and improve the cooperation ability of collaborative analysis. Experiments indicate that the proposed collaborative analysis method works more efficiently than the comparison methods.
基于知识转移的高光谱波段选择多数据集协同分析
提出了一种基于知识转移的高光谱波段选择协同分析方法。这种协同分析方法为多个数据集建立不同的波段选择任务,协同分析高光谱数据集之间共享的光谱空间结构,从而提高各数据集波段选择任务的性能。动态调整传递概率,有效实现谱知识的传递,提高协同分析的协作能力。实验表明,所提出的协同分析方法比对比分析方法更有效。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信