Down-hill Simplex Method based Differential Evolution

Daichi Kamiyama, K. Tamura, K. Yasuda
{"title":"Down-hill Simplex Method based Differential Evolution","authors":"Daichi Kamiyama, K. Tamura, K. Yasuda","doi":"10.1541/IEEJEISS.130.1271","DOIUrl":null,"url":null,"abstract":"Differential Evolution (DE) is based on both an evolutionary strategy and a parallel direct search method employing a population. DE is an effective optimization method available for solving global optimization problem over continuous space. DE has a few control parameters that have to be set by users. This paper describes a new DE using Down-hill Simplex Method. Then we consider average distance of a new DE and we examine DE to choice a proposal method or the other proposal method according to the average distance. The feasibility and advantage of the proposed DE are demonstrated through some numerical simulations using four different typical global optimization test problems.","PeriodicalId":438704,"journal":{"name":"Proceedings of SICE Annual Conference 2010","volume":"52 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of SICE Annual Conference 2010","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1541/IEEJEISS.130.1271","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

Differential Evolution (DE) is based on both an evolutionary strategy and a parallel direct search method employing a population. DE is an effective optimization method available for solving global optimization problem over continuous space. DE has a few control parameters that have to be set by users. This paper describes a new DE using Down-hill Simplex Method. Then we consider average distance of a new DE and we examine DE to choice a proposal method or the other proposal method according to the average distance. The feasibility and advantage of the proposed DE are demonstrated through some numerical simulations using four different typical global optimization test problems.
基于微分进化的下山单纯形法
差分进化(DE)是基于一种进化策略和一种采用种群的并行直接搜索方法。DE是求解连续空间上全局优化问题的一种有效的优化方法。DE有一些必须由用户设置的控制参数。本文提出了一种新的基于下山单纯形法的DE。然后考虑新DE的平均距离,并根据平均距离对DE进行检验,选择一种建议方法或另一种建议方法。通过4个典型全局优化测试问题的数值模拟,验证了该方法的可行性和优越性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信