{"title":"Spatio-Temporal Modeling of BGP Routing Table Evolution","authors":"M. Utsumi, H. Asai, H. Esaki","doi":"10.1145/3095786.3095794","DOIUrl":null,"url":null,"abstract":"Modeling the routing table growth is vital to the BGP operation. The temporal evolution of the routing table size has been researched to anticipate the memory limitation of BGP routers. However, route aggregation and compression techniques make it difficult to expect the actual memory size from the routing table size. Therefore, further evolution models focusing on the spatial routing table structure are required to evaluate the tolerance of these techniques to future routing table growth. In this paper, we create an evolution model focusing on spatio-temporal route changes using ten-year BGP routing table datasets. We categorize route variations into three types; new, fragmented, and vanished and then create a model for each type. We also demonstrate the characteristics of the model parameters in these ten years.","PeriodicalId":209819,"journal":{"name":"Proceedings of the 12th International Conference on Future Internet Technologies","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-06-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 12th International Conference on Future Internet Technologies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3095786.3095794","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Modeling the routing table growth is vital to the BGP operation. The temporal evolution of the routing table size has been researched to anticipate the memory limitation of BGP routers. However, route aggregation and compression techniques make it difficult to expect the actual memory size from the routing table size. Therefore, further evolution models focusing on the spatial routing table structure are required to evaluate the tolerance of these techniques to future routing table growth. In this paper, we create an evolution model focusing on spatio-temporal route changes using ten-year BGP routing table datasets. We categorize route variations into three types; new, fragmented, and vanished and then create a model for each type. We also demonstrate the characteristics of the model parameters in these ten years.