{"title":"Hyphylearn: A Domain Adaptation-Inspired Approach to Classification Using Limited Number of Training Samples","authors":"Alireza Nooraiepour, W. Bajwa, N. Mandayam","doi":"10.1109/mlsp52302.2021.9596469","DOIUrl":null,"url":null,"abstract":"The fundamental task of classification given a limited number of training data samples is considered for physical systems with known parametric statistical models. As a solution, a hybrid classification method-termed HYPHYLEARN-is proposed that exploits both the physics-based statistical models and the learning-based classifiers. The proposed solution is based on the conjecture that HYPHYLEARN would alleviate the challenges associated with the individual approaches of learning-based and statistical model-based classifiers by fusing their respective strengths. The proposed hybrid approach first estimates the unobservable model parameters using the available (suboptimal) statistical estimation procedures, and subsequently uses the physics-based statistical models to generate synthetic data. Next, the training data samples are incorporated with the synthetic data in a learning-based classifier that is based on domain-adversarial training of neural networks. Numerical results on multiuser detection, a concrete communication problem, demonstrate that HYPHYLEARN leads to major classification improvements compared to the existing stand-alone and hybrid classification methods.","PeriodicalId":156116,"journal":{"name":"2021 IEEE 31st International Workshop on Machine Learning for Signal Processing (MLSP)","volume":"45 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE 31st International Workshop on Machine Learning for Signal Processing (MLSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/mlsp52302.2021.9596469","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
The fundamental task of classification given a limited number of training data samples is considered for physical systems with known parametric statistical models. As a solution, a hybrid classification method-termed HYPHYLEARN-is proposed that exploits both the physics-based statistical models and the learning-based classifiers. The proposed solution is based on the conjecture that HYPHYLEARN would alleviate the challenges associated with the individual approaches of learning-based and statistical model-based classifiers by fusing their respective strengths. The proposed hybrid approach first estimates the unobservable model parameters using the available (suboptimal) statistical estimation procedures, and subsequently uses the physics-based statistical models to generate synthetic data. Next, the training data samples are incorporated with the synthetic data in a learning-based classifier that is based on domain-adversarial training of neural networks. Numerical results on multiuser detection, a concrete communication problem, demonstrate that HYPHYLEARN leads to major classification improvements compared to the existing stand-alone and hybrid classification methods.