{"title":"Power quality monitor placement method using adaptive quantum-inspired binary gravitational search algorithm","authors":"A. A. Ibrahim, A. Mohamed, H. Shareef","doi":"10.1109/ASSCC.2012.6523294","DOIUrl":null,"url":null,"abstract":"This paper presents application of adaptive quantum-inspired binary gravitational search algorithm for solving optimal power quality monitor (PQM) placement for voltage sag assessment. The optimization involves multi objectives and handles observability constraint determined by the concept of topological monitor reach area. The overall objective function consists of two functions which are monitor overlapping index and sag severity index. In this algorithm, the quantum-inspired binary gravitational search algorithm is improved by applying the concept of artificial immune system as to make it adaptive towards the changes of constraints. The proposed algorithm is applied on the 69-bus distribution system and compared to the conventional method so as to illustrate its effectiveness.","PeriodicalId":341348,"journal":{"name":"2012 10th International Power & Energy Conference (IPEC)","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 10th International Power & Energy Conference (IPEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ASSCC.2012.6523294","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9
Abstract
This paper presents application of adaptive quantum-inspired binary gravitational search algorithm for solving optimal power quality monitor (PQM) placement for voltage sag assessment. The optimization involves multi objectives and handles observability constraint determined by the concept of topological monitor reach area. The overall objective function consists of two functions which are monitor overlapping index and sag severity index. In this algorithm, the quantum-inspired binary gravitational search algorithm is improved by applying the concept of artificial immune system as to make it adaptive towards the changes of constraints. The proposed algorithm is applied on the 69-bus distribution system and compared to the conventional method so as to illustrate its effectiveness.