Computing Graph Distances Parameterized by Treewidth and Diameter

T. Husfeldt
{"title":"Computing Graph Distances Parameterized by Treewidth and Diameter","authors":"T. Husfeldt","doi":"10.4230/LIPIcs.IPEC.2016.16","DOIUrl":null,"url":null,"abstract":"We show that the eccentricity of every vertex in an undirected graph on n vertices can be computed in time n exp O(k*log(d)), where k is the treewidth of the graph and d is the diameter. This means that the diameter and the radius of the graph can be computed in the same time. In particular, if the diameter is constant, it can be determined in time n*exp(O(k)). This result matches a recent hardness result by Abboud, Vassilevska Williams, and Wang [SODA 2016] that shows that under the Strong Exponential Time Hypothesis of Impagliazzo, Paturi, and Zane [J. Comp. Syst. Sc., 2001], for any epsilon > 0, no algorithm with running time n^{2-epsilon}*exp(o(k)) can distinguish between graphs with diameter 2 and 3.","PeriodicalId":137775,"journal":{"name":"International Symposium on Parameterized and Exact Computation","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"18","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Symposium on Parameterized and Exact Computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4230/LIPIcs.IPEC.2016.16","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 18

Abstract

We show that the eccentricity of every vertex in an undirected graph on n vertices can be computed in time n exp O(k*log(d)), where k is the treewidth of the graph and d is the diameter. This means that the diameter and the radius of the graph can be computed in the same time. In particular, if the diameter is constant, it can be determined in time n*exp(O(k)). This result matches a recent hardness result by Abboud, Vassilevska Williams, and Wang [SODA 2016] that shows that under the Strong Exponential Time Hypothesis of Impagliazzo, Paturi, and Zane [J. Comp. Syst. Sc., 2001], for any epsilon > 0, no algorithm with running time n^{2-epsilon}*exp(o(k)) can distinguish between graphs with diameter 2 and 3.
计算由树宽和直径参数化的图距离
我们证明了在n个顶点上的无向图中每个顶点的偏心率可以在n exp O(k*log(d))时间内计算出来,其中k是图的树宽,d是直径。这意味着图形的直径和半径可以同时计算。特别是,如果直径是恒定的,它可以在n*exp(O(k))时间内确定。这一结果与Abboud, Vassilevska Williams和Wang最近的硬度结果相吻合[SODA 2016],该结果表明,在Impagliazzo, Paturi和Zane的强指数时间假设下[J]。薪酬系统。Sc., 2001],对于任何epsilon > 0,没有运行时间为n^{2-epsilon}*exp(o(k))的算法可以区分直径为2和3的图。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信