A comparison of Extreme Learning Machine and Support Vector Machine classifiers

M. Bucurica, R. Dogaru, I. Dogaru
{"title":"A comparison of Extreme Learning Machine and Support Vector Machine classifiers","authors":"M. Bucurica, R. Dogaru, I. Dogaru","doi":"10.1109/ICCP.2015.7312705","DOIUrl":null,"url":null,"abstract":"The comparison of two classifiers, the Extreme Learning Machine (ELM) and the Support Vector Machine (SVM) is considered for performance, resources used (neurons or support vector kernels) and computational complexity (speed). Both implementations are of similar type (C++ compiled as Octave .mex files) to have a better evaluation of speed and computational complexity. Our results indicate that ELM has similar performance to SVM in terms of speed while having the advantage of a smaller number of resources used.","PeriodicalId":158453,"journal":{"name":"2015 IEEE International Conference on Intelligent Computer Communication and Processing (ICCP)","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"21","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE International Conference on Intelligent Computer Communication and Processing (ICCP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCP.2015.7312705","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 21

Abstract

The comparison of two classifiers, the Extreme Learning Machine (ELM) and the Support Vector Machine (SVM) is considered for performance, resources used (neurons or support vector kernels) and computational complexity (speed). Both implementations are of similar type (C++ compiled as Octave .mex files) to have a better evaluation of speed and computational complexity. Our results indicate that ELM has similar performance to SVM in terms of speed while having the advantage of a smaller number of resources used.
极限学习机与支持向量机分类器的比较
两种分类器,极限学习机(ELM)和支持向量机(SVM)的比较考虑了性能,使用的资源(神经元或支持向量核)和计算复杂性(速度)。这两种实现都是类似的类型(c++编译为Octave .mex文件),以便更好地评估速度和计算复杂性。我们的结果表明,ELM在速度方面与SVM具有相似的性能,同时具有使用较少资源的优势。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信