Evaluating Covariance Forecasts Via Mean-Variance Portfolio Decisions

M. Franke
{"title":"Evaluating Covariance Forecasts Via Mean-Variance Portfolio Decisions","authors":"M. Franke","doi":"10.2139/ssrn.1986708","DOIUrl":null,"url":null,"abstract":"This paper presents an empirical comparative study of di fferent covariance estimators. The Engle-Colacito test is used for an indirect evaluation of alternative out-of-sample covariance forecasts in a portfolio setting for varying sample sizes, short selling constraints and market conditions. Errors in the estimation of variances have a higher impact on realized portfolio variance than errors in the estimation of covariances. Bayesian shrinkage estimators and the orthogonal GARCH estimator of covariance matrices lead to signi ficantly lower realized portfolio volatility compared to benchmark estimators.","PeriodicalId":308524,"journal":{"name":"ERN: Other Econometrics: Applied Econometric Modeling in Forecasting (Topic)","volume":"162 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ERN: Other Econometrics: Applied Econometric Modeling in Forecasting (Topic)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.1986708","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

This paper presents an empirical comparative study of di fferent covariance estimators. The Engle-Colacito test is used for an indirect evaluation of alternative out-of-sample covariance forecasts in a portfolio setting for varying sample sizes, short selling constraints and market conditions. Errors in the estimation of variances have a higher impact on realized portfolio variance than errors in the estimation of covariances. Bayesian shrinkage estimators and the orthogonal GARCH estimator of covariance matrices lead to signi ficantly lower realized portfolio volatility compared to benchmark estimators.
通过均值-方差组合决策评估协方差预测
本文对不同协方差估计量进行了实证比较研究。Engle-Colacito检验用于间接评估在不同样本量、卖空约束和市场条件下的投资组合设置中的替代样本外协方差预测。方差估计误差比协方差估计误差对已实现投资组合方差的影响更大。与基准估计相比,贝叶斯收缩估计和协方差矩阵的正交GARCH估计可显著降低已实现的投资组合波动率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信