Gaussian Mixture Models Use-Case: In-Memory Analysis with Myria

R. Maas, Jeremy Hyrkas, O. Telford, M. Balazinska, A. Connolly, Bill Howe
{"title":"Gaussian Mixture Models Use-Case: In-Memory Analysis with Myria","authors":"R. Maas, Jeremy Hyrkas, O. Telford, M. Balazinska, A. Connolly, Bill Howe","doi":"10.1145/2803140.2803143","DOIUrl":null,"url":null,"abstract":"In our work with scientists, we find that Gaussian Mixture Modeling is a common type of analysis applied to increasingly large datasets. We implement this algorithm in the Myria shared-nothing relational data management system, which performs the computation in memory. We study resulting memory utilization challenges and implement several optimizations that yield an efficient and scalable solution. Empirical evaluations on large astronomy and oceanography datasets confirm that our Myria approach scales well and performs up to an order of magnitude faster than Hadoop.","PeriodicalId":175654,"journal":{"name":"Proceedings of the 3rd VLDB Workshop on In-Memory Data Mangement and Analytics","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 3rd VLDB Workshop on In-Memory Data Mangement and Analytics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2803140.2803143","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

Abstract

In our work with scientists, we find that Gaussian Mixture Modeling is a common type of analysis applied to increasingly large datasets. We implement this algorithm in the Myria shared-nothing relational data management system, which performs the computation in memory. We study resulting memory utilization challenges and implement several optimizations that yield an efficient and scalable solution. Empirical evaluations on large astronomy and oceanography datasets confirm that our Myria approach scales well and performs up to an order of magnitude faster than Hadoop.
高斯混合模型用例:内存分析与Myria
在我们与科学家的合作中,我们发现高斯混合建模是一种常见的分析类型,适用于越来越大的数据集。该算法在Myria无共享关系数据管理系统中实现,该系统在内存中进行计算。我们研究了由此产生的内存利用挑战,并实现了几种优化,以产生高效且可扩展的解决方案。对大型天文学和海洋学数据集的经验评估证实,我们的Myria方法可扩展性好,执行速度比Hadoop快了一个数量级。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信