Fuzzy rule classifiers for multi-label classification

R. Prati
{"title":"Fuzzy rule classifiers for multi-label classification","authors":"R. Prati","doi":"10.1109/FUZZ-IEEE.2015.7337815","DOIUrl":null,"url":null,"abstract":"In this paper we investigate the use of fuzzy rule-based classifiers for multi-label classification. This classification task deals with problems where more than one label could be assigned simultaneously to a given instance. We concentrate on problem transformation methods, which use different strategies to transform a multi-label problem into a different single-label classification problems. This transformation make it possible to use almost any single label learner as base-classifiers, thus benefiting from the rich miscellany of algorithms available for this task. Fuzzy rules provide both interpretability and flexibility to model the vagueness among different labels. Empirical results using six datasets, four different problem transformation methods, eight base-classifiers, and five different performance measure shows the suitability of fuzzy rules for this task.","PeriodicalId":185191,"journal":{"name":"2015 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE)","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/FUZZ-IEEE.2015.7337815","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

Abstract

In this paper we investigate the use of fuzzy rule-based classifiers for multi-label classification. This classification task deals with problems where more than one label could be assigned simultaneously to a given instance. We concentrate on problem transformation methods, which use different strategies to transform a multi-label problem into a different single-label classification problems. This transformation make it possible to use almost any single label learner as base-classifiers, thus benefiting from the rich miscellany of algorithms available for this task. Fuzzy rules provide both interpretability and flexibility to model the vagueness among different labels. Empirical results using six datasets, four different problem transformation methods, eight base-classifiers, and five different performance measure shows the suitability of fuzzy rules for this task.
多标签模糊规则分类器
本文研究了基于模糊规则的分类器在多标签分类中的应用。这个分类任务处理的问题是,一个给定实例可以同时分配多个标签。我们专注于问题转换方法,它使用不同的策略将多标签问题转换为不同的单标签分类问题。这种转换使得使用几乎任何单个标签学习器作为基本分类器成为可能,从而受益于可用于该任务的丰富的各种算法。模糊规则为不同标签之间的模糊性建模提供了可解释性和灵活性。使用六个数据集、四种不同的问题转换方法、八种基本分类器和五种不同的性能度量的实证结果表明,模糊规则适用于该任务。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信