Two-way collaborative filtering on semantically enhanced movie ratings

H. Oğul, Emrah Ekmekciler
{"title":"Two-way collaborative filtering on semantically enhanced movie ratings","authors":"H. Oğul, Emrah Ekmekciler","doi":"10.2498/iti.2012.0404","DOIUrl":null,"url":null,"abstract":"A key step in recommendation systems is to estimate if a user would likely enjoy an item who has not considered yet. In this study, a new framework is defined to predict user ratings on new items from previously given ratings by other users. The systems has two major steps: (1) Enhancing available data based on semantic content to get a full item-user matrix, and (2) Predicting the unknown rating using an integrated feature set of “other ratings given by the same user” and “other ratings given to the same item”. This allows the classifier to consider both user similarities and item similarities simultaneously. The system is shown to outperform existing methods in terms of prediction accuracy on a benchmark movie dataset.","PeriodicalId":135105,"journal":{"name":"Proceedings of the ITI 2012 34th International Conference on Information Technology Interfaces","volume":"94 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the ITI 2012 34th International Conference on Information Technology Interfaces","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2498/iti.2012.0404","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

A key step in recommendation systems is to estimate if a user would likely enjoy an item who has not considered yet. In this study, a new framework is defined to predict user ratings on new items from previously given ratings by other users. The systems has two major steps: (1) Enhancing available data based on semantic content to get a full item-user matrix, and (2) Predicting the unknown rating using an integrated feature set of “other ratings given by the same user” and “other ratings given to the same item”. This allows the classifier to consider both user similarities and item similarities simultaneously. The system is shown to outperform existing methods in terms of prediction accuracy on a benchmark movie dataset.
基于语义增强的电影分级的双向协同过滤
推荐系统的一个关键步骤是估计用户是否可能喜欢尚未考虑过的商品。在这项研究中,定义了一个新的框架来预测用户对其他用户先前给出的评分对新项目的评分。该系统有两个主要步骤:(1)基于语义内容增强可用数据以获得完整的物品-用户矩阵;(2)使用“同一用户给出的其他评分”和“同一物品的其他评分”的综合特征集预测未知评分。这允许分类器同时考虑用户相似度和项目相似度。该系统在基准电影数据集的预测精度方面优于现有方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信