Extensions of the linear fractional representation toolbox (LFRT)

J. Magni
{"title":"Extensions of the linear fractional representation toolbox (LFRT)","authors":"J. Magni","doi":"10.1109/CACSD.2004.1393886","DOIUrl":null,"url":null,"abstract":"The initial version of linear fractional representation toolbox was mostly devoted to modelling with a special emphasis to LFT order reduction. An LFT representation can be viewed as the realization of a symbolic expression, therefore, scheduled gains are LFTs. This paper presents an extension of this toolbox to scheduled feedback design in LFT form. The well-posedness problem of such feedback gains is addressed. In addition, some classical analysis techniques (Nyquist, Bode, step responses...) are adapted to LFT objects via parameter gridding","PeriodicalId":111199,"journal":{"name":"2004 IEEE International Conference on Robotics and Automation (IEEE Cat. No.04CH37508)","volume":"44 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2004-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2004 IEEE International Conference on Robotics and Automation (IEEE Cat. No.04CH37508)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CACSD.2004.1393886","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

The initial version of linear fractional representation toolbox was mostly devoted to modelling with a special emphasis to LFT order reduction. An LFT representation can be viewed as the realization of a symbolic expression, therefore, scheduled gains are LFTs. This paper presents an extension of this toolbox to scheduled feedback design in LFT form. The well-posedness problem of such feedback gains is addressed. In addition, some classical analysis techniques (Nyquist, Bode, step responses...) are adapted to LFT objects via parameter gridding
线性分数表示工具箱(LFRT)的扩展
线性分数表示工具箱的初始版本主要致力于建模,特别强调LFT降阶。LFT表示可以看作是符号表达式的实现,因此,调度增益就是LFT。本文将该工具箱扩展到LFT形式的计划反馈设计。解决了这种反馈增益的适定性问题。此外,一些经典的分析技术(Nyquist, Bode,阶跃响应等)通过参数网格化适用于LFT对象
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信