Using Ant Colony Optimization to Route a Team of UAVs to Fires Based on Known Fire Intensities

Karthik Shaji
{"title":"Using Ant Colony Optimization to Route a Team of UAVs to Fires Based on Known Fire Intensities","authors":"Karthik Shaji","doi":"10.1145/3511430.3511462","DOIUrl":null,"url":null,"abstract":"1 ABSTRACT Increasing in severity due to Climate Change, wildfires will increasingly damage human populations. Autonomous solutions to fighting fires using Unmanned Aerial Vehicles (UAVs) show increasing promise in recent years. In this paper, we apply Ant Colony Optimization to allocate a team of UAVs with known fire extinguisher payloads to fires of known intensities. We evaluate the effectiveness of the algorithm on a dataset based on Washington Department of Natural Resources fire data from 2011-2020.","PeriodicalId":138760,"journal":{"name":"15th Innovations in Software Engineering Conference","volume":"27 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-02-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"15th Innovations in Software Engineering Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3511430.3511462","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

1 ABSTRACT Increasing in severity due to Climate Change, wildfires will increasingly damage human populations. Autonomous solutions to fighting fires using Unmanned Aerial Vehicles (UAVs) show increasing promise in recent years. In this paper, we apply Ant Colony Optimization to allocate a team of UAVs with known fire extinguisher payloads to fires of known intensities. We evaluate the effectiveness of the algorithm on a dataset based on Washington Department of Natural Resources fire data from 2011-2020.
基于已知的火力强度,使用蚁群优化将一队无人机送到火场
随着气候变化的加剧,森林大火对人类的危害越来越大。近年来,使用无人驾驶飞行器(uav)的自主灭火解决方案显示出越来越大的前景。在本文中,我们应用蚁群优化算法将一组具有已知灭火器有效载荷的无人机分配到已知强度的火灾中。我们在基于2011-2020年华盛顿自然资源部火灾数据的数据集上评估了算法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信