Private, Yet Practical, Multiparty Deep Learning

Xinyang Zhang, S. Ji, Hui Wang, Ting Wang
{"title":"Private, Yet Practical, Multiparty Deep Learning","authors":"Xinyang Zhang, S. Ji, Hui Wang, Ting Wang","doi":"10.1109/ICDCS.2017.215","DOIUrl":null,"url":null,"abstract":"In this paper, we consider the problem of multiparty deep learning (MDL), wherein autonomous data owners jointly train accurate deep neural network models without sharing their private data. We design, implement, and evaluate ∝MDL, a new MDL paradigm built upon three primitives: asynchronous optimization, lightweight homomorphic encryption, and threshold secret sharing. Compared with prior work, ∝MDL departs in significant ways: a) besides providing explicit privacy guarantee, it retains desirable model utility, which is paramount for accuracy-critical domains; b) it provides an intuitive handle for the operator to gracefully balance model utility and training efficiency; c) moreover, it supports delicate control over communication and computational costs by offering two variants, operating under loose and tight coordination respectively, thus optimizable for given system settings (e.g., limited versus sufficient network bandwidth). Through extensive empirical evaluation using benchmark datasets and deep learning architectures, we demonstrate the efficacy of ∝MDL.","PeriodicalId":127689,"journal":{"name":"2017 IEEE 37th International Conference on Distributed Computing Systems (ICDCS)","volume":"24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"48","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE 37th International Conference on Distributed Computing Systems (ICDCS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDCS.2017.215","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 48

Abstract

In this paper, we consider the problem of multiparty deep learning (MDL), wherein autonomous data owners jointly train accurate deep neural network models without sharing their private data. We design, implement, and evaluate ∝MDL, a new MDL paradigm built upon three primitives: asynchronous optimization, lightweight homomorphic encryption, and threshold secret sharing. Compared with prior work, ∝MDL departs in significant ways: a) besides providing explicit privacy guarantee, it retains desirable model utility, which is paramount for accuracy-critical domains; b) it provides an intuitive handle for the operator to gracefully balance model utility and training efficiency; c) moreover, it supports delicate control over communication and computational costs by offering two variants, operating under loose and tight coordination respectively, thus optimizable for given system settings (e.g., limited versus sufficient network bandwidth). Through extensive empirical evaluation using benchmark datasets and deep learning architectures, we demonstrate the efficacy of ∝MDL.
私人,但实用,多方深度学习
在本文中,我们考虑了多方深度学习(MDL)问题,其中自主数据所有者在不共享其私有数据的情况下共同训练精确的深度神经网络模型。我们设计、实现和评估了∝MDL,这是一种新的MDL范式,建立在三个基本要素之上:异步优化、轻量级同态加密和阈值秘密共享。与先前的工作相比,∝MDL在以下方面有显著的不同:a)除了提供明确的隐私保证外,它保留了理想的模型效用,这对于精度关键领域至关重要;B)为操作者提供了一个直观的手柄,可以很好地平衡模型的实用性和训练效率;C)此外,它通过提供两种变体来支持对通信和计算成本的精细控制,分别在松散和紧密的协调下运行,因此可以针对给定的系统设置进行优化(例如,有限的网络带宽与足够的网络带宽)。通过使用基准数据集和深度学习架构进行广泛的实证评估,我们证明了∝MDL的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信