Characteristic Classes

A. Ranicki
{"title":"Characteristic Classes","authors":"A. Ranicki","doi":"10.1142/9789811214820_0008","DOIUrl":null,"url":null,"abstract":"The goal of this lecture notes is to introduce to Characteristic Classes. This is an important tool of the contemporary mathematics, indispensable to work in geometry and topology, and also useful in number theory. Classical roots of characteristic classes overlap: the Euler characteristic, indices of vector fields and the Poincaré–Hopf theorem, Plücker formulas for plane curves, the Euler characteristic of the Milnor fibre, Riemann–Roch and Riemann–Hurwitz theorems for curves and Schubert calculus. The present approach to the characteristic classes treats them as elements of the cohomology rings and their analogues. We shall discuss the Chern classes of complex vector bundles, characteristic classes of real vector bundles, various characteristic classes of singular analytic varieties. The fundamental theorems on characteristic classes will be proven, in particular, the Grothendieck– –Hirzebruch–Riemann–Roch theorem. Characteristic classes mark out the place where many domains of the contemporary mathematics meet: geometry, topology, singularities, representation theory, algebra and combinatorics. As for what concerns these last three domains, we shall discuss the basic properties of Schur functions. To the memory of my Father (1928–2012 )","PeriodicalId":141790,"journal":{"name":"Lectures on the Geometry of Manifolds","volume":"91 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Lectures on the Geometry of Manifolds","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/9789811214820_0008","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The goal of this lecture notes is to introduce to Characteristic Classes. This is an important tool of the contemporary mathematics, indispensable to work in geometry and topology, and also useful in number theory. Classical roots of characteristic classes overlap: the Euler characteristic, indices of vector fields and the Poincaré–Hopf theorem, Plücker formulas for plane curves, the Euler characteristic of the Milnor fibre, Riemann–Roch and Riemann–Hurwitz theorems for curves and Schubert calculus. The present approach to the characteristic classes treats them as elements of the cohomology rings and their analogues. We shall discuss the Chern classes of complex vector bundles, characteristic classes of real vector bundles, various characteristic classes of singular analytic varieties. The fundamental theorems on characteristic classes will be proven, in particular, the Grothendieck– –Hirzebruch–Riemann–Roch theorem. Characteristic classes mark out the place where many domains of the contemporary mathematics meet: geometry, topology, singularities, representation theory, algebra and combinatorics. As for what concerns these last three domains, we shall discuss the basic properties of Schur functions. To the memory of my Father (1928–2012 )
特性类
本课堂讲稿的目的是向特色类介绍。这是当代数学的一个重要工具,是研究几何和拓扑不可缺少的工具,在数论中也很有用。特征类的经典根重叠:欧拉特征、向量场的指数和庞加莱姆-卡姆-霍普夫定理、平面曲线的plicker公式、密尔诺纤维的欧拉特征、曲线的黎曼-洛克定理和黎曼-赫维茨定理以及舒伯特微积分。目前研究特征类的方法将它们视为上同环及其类似环的元素。讨论复向量束的陈氏类,实向量束的特征类,奇异解析变的各种特征类。证明了特征类的基本定理,特别是Grothendieck - - hirzebruch - riemann - roch定理。特征类标志着当代数学的许多领域相遇的地方:几何,拓扑,奇点,表示理论,代数和组合。至于与后三个域有关的是什么,我们将讨论舒尔函数的基本性质。纪念我的父亲(1928-2012)
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信