Twitter-based Polarised Embeddings for Abusive Language Detection

Leon Graumas, Roy David, Tommaso Caselli
{"title":"Twitter-based Polarised Embeddings for Abusive Language Detection","authors":"Leon Graumas, Roy David, Tommaso Caselli","doi":"10.1109/ACIIW.2019.8925049","DOIUrl":null,"url":null,"abstract":"We present a method to generate polarised word embeddings using controversial topics as search terms in Twitter as proxies for interactions among social media communities that may be liable to use abusive language. We investigate to what extent models trained with these embeddings perform with respect to generic embeddings across four data sets of abusive language, both in the same domain and out of domain, using simple linear classifiers. Our results show that the polarised embeddings are competitive in the same domain data sets, and perform better in out of domain one.","PeriodicalId":193568,"journal":{"name":"2019 8th International Conference on Affective Computing and Intelligent Interaction Workshops and Demos (ACIIW)","volume":"160 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 8th International Conference on Affective Computing and Intelligent Interaction Workshops and Demos (ACIIW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ACIIW.2019.8925049","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

We present a method to generate polarised word embeddings using controversial topics as search terms in Twitter as proxies for interactions among social media communities that may be liable to use abusive language. We investigate to what extent models trained with these embeddings perform with respect to generic embeddings across four data sets of abusive language, both in the same domain and out of domain, using simple linear classifiers. Our results show that the polarised embeddings are competitive in the same domain data sets, and perform better in out of domain one.
基于twitter的恶意语言检测极化嵌入
我们提出了一种方法,利用Twitter上有争议的话题作为搜索词,作为可能使用辱骂性语言的社交媒体社区之间互动的代理,来生成两极分化的词嵌入。我们使用简单的线性分类器,研究了使用这些嵌入训练的模型在四个滥用语言数据集的通用嵌入方面的表现,包括在同一领域和域外。我们的研究结果表明,极化嵌入在同一领域数据集中具有竞争力,并且在非领域一中表现更好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信