S. A. Podorozhnyak, A. V. Chzhan, V. Maltsev, I. N. Krayuhin, G. Patrin, I. Sakash
{"title":"Structural Changes of Co Caused a Change of the Solution pH During Chemical Deposition","authors":"S. A. Podorozhnyak, A. V. Chzhan, V. Maltsev, I. N. Krayuhin, G. Patrin, I. Sakash","doi":"10.17516/1997-1397-2020-13-4-451-458","DOIUrl":null,"url":null,"abstract":"The phase transformations of the Co lattice are discussed, which determine the anomalous changes in the magnetic properties of chemically deposited Co-P films obtained at various pH values. The coercivity of the Hc films obtained at low pH values exceeds 1 kOe and decreases to several units Oe in the films obtained at high pH values. It is shown that the observed changes in the magnetic properties of Co-P films are caused by the transition of the cobalt crystal lattice to the nanocrystalline state.","PeriodicalId":422202,"journal":{"name":"Journal of Siberian Federal University. Mathematics and Physics","volume":"21 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Siberian Federal University. Mathematics and Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.17516/1997-1397-2020-13-4-451-458","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
The phase transformations of the Co lattice are discussed, which determine the anomalous changes in the magnetic properties of chemically deposited Co-P films obtained at various pH values. The coercivity of the Hc films obtained at low pH values exceeds 1 kOe and decreases to several units Oe in the films obtained at high pH values. It is shown that the observed changes in the magnetic properties of Co-P films are caused by the transition of the cobalt crystal lattice to the nanocrystalline state.