On-line fuzzy neural modeling with structure and parameters updating

A. Ferreyra, W. Yu
{"title":"On-line fuzzy neural modeling with structure and parameters updating","authors":"A. Ferreyra, W. Yu","doi":"10.1109/CIMSA.2004.1397247","DOIUrl":null,"url":null,"abstract":"In this paper we propose a novel online clustering approach which can be applied in a general class of fuzzy neural networks. Both structure identification and parameters learning are online. The new clustering method for the structure identification can separate input-output data into different groups (rulenumber) by online input/output data. For the parameter learning, our algorithm has two advantages over the others. First, the normal methods for parameter identification are based on a fixed structure and whole data, for example ANFIS, but after clustering we know each group corresponds to one rule, so we train each rule by its group data, it is more effective. Second, we give a time-varying learning rate for the common used backpropagation algorithm, we prove that the new algorithm is stable and faster than backpropagation algorithm.","PeriodicalId":102405,"journal":{"name":"2004 IEEE International Conference onComputational Intelligence for Measurement Systems and Applications, 2004. CIMSA.","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2004-07-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2004 IEEE International Conference onComputational Intelligence for Measurement Systems and Applications, 2004. CIMSA.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CIMSA.2004.1397247","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

In this paper we propose a novel online clustering approach which can be applied in a general class of fuzzy neural networks. Both structure identification and parameters learning are online. The new clustering method for the structure identification can separate input-output data into different groups (rulenumber) by online input/output data. For the parameter learning, our algorithm has two advantages over the others. First, the normal methods for parameter identification are based on a fixed structure and whole data, for example ANFIS, but after clustering we know each group corresponds to one rule, so we train each rule by its group data, it is more effective. Second, we give a time-varying learning rate for the common used backpropagation algorithm, we prove that the new algorithm is stable and faster than backpropagation algorithm.
基于结构和参数更新的在线模糊神经网络建模
本文提出了一种新的在线聚类方法,该方法可以应用于一般类型的模糊神经网络。结构辨识和参数学习都是在线的。这种结构识别的聚类方法可以通过在线输入输出数据将输入输出数据分成不同的组(rulenumber)。对于参数学习,我们的算法有两个优点。首先,常规的参数识别方法是基于固定的结构和整个数据,如ANFIS,但聚类后我们知道每一组对应一条规则,所以我们用它的组数据来训练每条规则,这样更有效。其次,给出了常用反向传播算法的时变学习率,证明了新算法比反向传播算法稳定且速度快。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信