Kernel Subspace Integral Image Based Probabilistic Visual Object Tracking

Iftikhar Majeed, Omar Arif
{"title":"Kernel Subspace Integral Image Based Probabilistic Visual Object Tracking","authors":"Iftikhar Majeed, Omar Arif","doi":"10.1109/DICTA.2015.7371275","DOIUrl":null,"url":null,"abstract":"This paper presents a novel object tracking algorithm. Object appearance and spatial information is learned from a single template using a non-linear subspace projection. A probabilistic search strategy, based on particle filter, is employed to find object region in each frame of the video sequence that best models the target object in the subspace representation. Particle filter estimates the posterior distribution using weighted samples. Increasing the number of samples increases the estimation accuracy at the cost of increased computations. We, therefore propose a novel kernel subspace integral image framework, which allows the tracker to densely sample the state space without loosing computational efficiency. The algorithm is tested on real world tracking examples to demonstrate the performance.","PeriodicalId":214897,"journal":{"name":"2015 International Conference on Digital Image Computing: Techniques and Applications (DICTA)","volume":"38 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 International Conference on Digital Image Computing: Techniques and Applications (DICTA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DICTA.2015.7371275","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper presents a novel object tracking algorithm. Object appearance and spatial information is learned from a single template using a non-linear subspace projection. A probabilistic search strategy, based on particle filter, is employed to find object region in each frame of the video sequence that best models the target object in the subspace representation. Particle filter estimates the posterior distribution using weighted samples. Increasing the number of samples increases the estimation accuracy at the cost of increased computations. We, therefore propose a novel kernel subspace integral image framework, which allows the tracker to densely sample the state space without loosing computational efficiency. The algorithm is tested on real world tracking examples to demonstrate the performance.
基于核子空间积分图像的概率视觉目标跟踪
提出了一种新的目标跟踪算法。使用非线性子空间投影从单个模板中学习对象的外观和空间信息。采用基于粒子滤波的概率搜索策略,在视频序列的每一帧中寻找最适合子空间表示中目标对象的目标区域。粒子滤波使用加权样本估计后验分布。增加样本数量以增加计算量为代价来提高估计精度。因此,我们提出了一种新的核子空间积分图像框架,该框架允许跟踪器在不损失计算效率的情况下密集采样状态空间。在实际跟踪示例中对该算法进行了测试,以验证其性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信