Jeong-Il Kim, Daeik D. Kim, Jonghae Kim, Choongyeun Cho, B. Jung, D. Peroulis
{"title":"Integrated Inductor Actively Engaging Metal Filling Rules","authors":"Jeong-Il Kim, Daeik D. Kim, Jonghae Kim, Choongyeun Cho, B. Jung, D. Peroulis","doi":"10.1109/CICC.2007.4405726","DOIUrl":null,"url":null,"abstract":"This paper reports a new strip-patterned integrated inductor that actively engages metal filling rules leading to reduced manufacturing cost and process-induced uncertainties while simultaneously maintaining state-of-the-art performance. The strip-patterned inductor consists of parallel horse shoe-shape metal lines in the foot print of a single-line inductor. It observes back-end-of-line (BEOL) metal density rules by design, and it is not subject to a post-layout patterning to enforce metal density on a large piece of metal. As a result, better model-to-hardware correlation (MHC) is expected. The new inductor structure is backed by experimental and simulated results that demonstrate the design methodology in the presence of process uncertainties typically not known to the circuit designer.","PeriodicalId":130106,"journal":{"name":"2007 IEEE Custom Integrated Circuits Conference","volume":"29 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 IEEE Custom Integrated Circuits Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CICC.2007.4405726","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3
Abstract
This paper reports a new strip-patterned integrated inductor that actively engages metal filling rules leading to reduced manufacturing cost and process-induced uncertainties while simultaneously maintaining state-of-the-art performance. The strip-patterned inductor consists of parallel horse shoe-shape metal lines in the foot print of a single-line inductor. It observes back-end-of-line (BEOL) metal density rules by design, and it is not subject to a post-layout patterning to enforce metal density on a large piece of metal. As a result, better model-to-hardware correlation (MHC) is expected. The new inductor structure is backed by experimental and simulated results that demonstrate the design methodology in the presence of process uncertainties typically not known to the circuit designer.