A. Naglah, A. DeFilippis, F. Khalifa, N. Singam, B. Aladili, Mohammadi Ghazal, G. Giridharan, A. Khalil, Adel Said Elmaghraby, A. El-Baz
{"title":"Computer-Aided Diagnosis of Acute Myocardial Infarction using Time-Dependent Plasma Metabolites","authors":"A. Naglah, A. DeFilippis, F. Khalifa, N. Singam, B. Aladili, Mohammadi Ghazal, G. Giridharan, A. Khalil, Adel Said Elmaghraby, A. El-Baz","doi":"10.1109/IST48021.2019.9010107","DOIUrl":null,"url":null,"abstract":"Acute myocardial infarction (MI) is complicated, and multiple etiologies can result in this clinical condition. Guidelines recognize two categories of MI: Thrombotic (Type 1) and non-thrombotic (Type 2), that have quite same prevalence but require unlike treatment. Unfortunately, diagnostic criteria to differentiate between Type 1 and Type 2 require invasive procedures. This results in inefficient and sub-optimal care of patients suspected of MI. This paper presents a novel machine-learning system that detects biomarkers of thrombus formation by analyzing the association between plasma metabolites with the formation of thrombosis in cohort of MI patients at multiple time-points. Study data are collected by a newly introduced non-targeted technique that evaluates the quantities of both known and unknown metabolites from blood samples. Our system uses recursive feature elimination (RFE) and multi-layer perceptron (MLP) neural network to detect associated metabolites at each time-point followed by weighted-voting algorithm using ensemble learning. Our experiment achieves an accuracy of 91%, sensitivity of 89%, and specificity of 94% for MI diagnosis.","PeriodicalId":117219,"journal":{"name":"2019 IEEE International Conference on Imaging Systems and Techniques (IST)","volume":"44 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE International Conference on Imaging Systems and Techniques (IST)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IST48021.2019.9010107","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
Acute myocardial infarction (MI) is complicated, and multiple etiologies can result in this clinical condition. Guidelines recognize two categories of MI: Thrombotic (Type 1) and non-thrombotic (Type 2), that have quite same prevalence but require unlike treatment. Unfortunately, diagnostic criteria to differentiate between Type 1 and Type 2 require invasive procedures. This results in inefficient and sub-optimal care of patients suspected of MI. This paper presents a novel machine-learning system that detects biomarkers of thrombus formation by analyzing the association between plasma metabolites with the formation of thrombosis in cohort of MI patients at multiple time-points. Study data are collected by a newly introduced non-targeted technique that evaluates the quantities of both known and unknown metabolites from blood samples. Our system uses recursive feature elimination (RFE) and multi-layer perceptron (MLP) neural network to detect associated metabolites at each time-point followed by weighted-voting algorithm using ensemble learning. Our experiment achieves an accuracy of 91%, sensitivity of 89%, and specificity of 94% for MI diagnosis.