Accelerator Design and Performance Modeling for Homomorphic Encrypted CNN Inference

Tian Ye, R. Kannan, V. Prasanna
{"title":"Accelerator Design and Performance Modeling for Homomorphic Encrypted CNN Inference","authors":"Tian Ye, R. Kannan, V. Prasanna","doi":"10.1109/HPEC43674.2020.9286219","DOIUrl":null,"url":null,"abstract":"The rapid advent of cloud computing has brought with it concerns on data security and privacy. Fully Homomorphic Encryption (FHE) is a technique for enabling data security that allows arbitrary computations to be performed directly on encrypted data. In particular, FHE can be used with convolutional neural networks (CNN) to perform inference as a service on homomorphic encrypted input data. However, the high computational demands of FHE inference require a careful understanding of the tradeoffs between various parameters such as security level, hardware resources and performance. In this paper, we propose a parameterized accelerator for homomorphic encrypted CNN inference. We first develop parallel algorithms to implement CNN operations via FHE primitives. We then develop a parameterized model to evaluate the performance of our CNN design. The model accepts inputs in terms of available hardware resources and security parameters and outputs performance estimates. As an illustration, for a typical image classification task on CIFAR-10 dataset with a seven-layer CNN model, we show that a batch of 4K encrypted images can be classified within 1 second on a device operating at 2 GHz clock rate with 16K MACs, 64 MB on-chip memory and 256 GB/s external memory bandwidth.","PeriodicalId":168544,"journal":{"name":"2020 IEEE High Performance Extreme Computing Conference (HPEC)","volume":"130 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-09-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE High Performance Extreme Computing Conference (HPEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/HPEC43674.2020.9286219","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

The rapid advent of cloud computing has brought with it concerns on data security and privacy. Fully Homomorphic Encryption (FHE) is a technique for enabling data security that allows arbitrary computations to be performed directly on encrypted data. In particular, FHE can be used with convolutional neural networks (CNN) to perform inference as a service on homomorphic encrypted input data. However, the high computational demands of FHE inference require a careful understanding of the tradeoffs between various parameters such as security level, hardware resources and performance. In this paper, we propose a parameterized accelerator for homomorphic encrypted CNN inference. We first develop parallel algorithms to implement CNN operations via FHE primitives. We then develop a parameterized model to evaluate the performance of our CNN design. The model accepts inputs in terms of available hardware resources and security parameters and outputs performance estimates. As an illustration, for a typical image classification task on CIFAR-10 dataset with a seven-layer CNN model, we show that a batch of 4K encrypted images can be classified within 1 second on a device operating at 2 GHz clock rate with 16K MACs, 64 MB on-chip memory and 256 GB/s external memory bandwidth.
同态加密CNN推理的加速器设计与性能建模
云计算的迅速出现带来了对数据安全和隐私的担忧。完全同态加密(FHE)是一种实现数据安全性的技术,它允许直接对加密数据执行任意计算。特别是,FHE可以与卷积神经网络(CNN)一起使用,将同态加密输入数据作为服务执行推理。然而,FHE推理的高计算需求需要仔细理解各种参数(如安全级别、硬件资源和性能)之间的权衡。本文提出了一种用于同态加密CNN推理的参数化加速器。我们首先开发了通过FHE原语实现CNN操作的并行算法。然后,我们开发了一个参数化模型来评估我们的CNN设计的性能。该模型接受可用硬件资源和安全参数方面的输入,并输出性能估计。作为一个例子,对于CIFAR-10数据集上具有七层CNN模型的典型图像分类任务,我们展示了一批4K加密图像可以在2 GHz时钟速率下,在16K mac, 64mb片上存储器和256gb /s外部存储器带宽的设备上在1秒内分类。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信