A technique for defining the architecture and weights of a neural image classifier

R. Re, F. Roli, S. Serpico, G. Vernazza
{"title":"A technique for defining the architecture and weights of a neural image classifier","authors":"R. Re, F. Roli, S. Serpico, G. Vernazza","doi":"10.1109/ICASSP.1992.226035","DOIUrl":null,"url":null,"abstract":"An approach to setting the architecture and the initial weights of an artificial neural network for solving classification problems is presented. A nonneural phase finds an approximate solution to the classification problems by constraining the shape of classification regions. After an appropriate mapping into a neural net, neural training is applied to refine the solution. Results on an image recognition application are presented.<<ETX>>","PeriodicalId":163713,"journal":{"name":"[Proceedings] ICASSP-92: 1992 IEEE International Conference on Acoustics, Speech, and Signal Processing","volume":"29 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1992-03-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"[Proceedings] ICASSP-92: 1992 IEEE International Conference on Acoustics, Speech, and Signal Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICASSP.1992.226035","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

An approach to setting the architecture and the initial weights of an artificial neural network for solving classification problems is presented. A nonneural phase finds an approximate solution to the classification problems by constraining the shape of classification regions. After an appropriate mapping into a neural net, neural training is applied to refine the solution. Results on an image recognition application are presented.<>
一种定义神经图像分类器的结构和权重的技术
提出了一种求解分类问题的人工神经网络体系结构和初始权值的设置方法。非神经相位通过约束分类区域的形状来找到分类问题的近似解。在适当映射到神经网络后,应用神经训练来改进解决方案。给出了一个图像识别应用的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信