A Super-Metamodeling Framework to Optimize System Predictability

Zhuo Yang, D. Eddy, S. Krishnamurty, I. Grosse, Yan Lu
{"title":"A Super-Metamodeling Framework to Optimize System Predictability","authors":"Zhuo Yang, D. Eddy, S. Krishnamurty, I. Grosse, Yan Lu","doi":"10.1115/DETC2018-86055","DOIUrl":null,"url":null,"abstract":"Statistical metamodels can robustly predict manufacturing process and engineering systems design results. Various techniques, such as Kriging, polynomial regression, artificial neural network and others, are each best suited for different scenarios that can range across a design space. Thus, methods are needed to identify the most appropriate metamodel or model composite for a given problem. To account for pros and cons of different metamodeling techniques for a wide diversity of data sets, in this paper we introduce a super-metamodel optimization framework (SMOF) to improve overall prediction accuracy by integrating different metamodeling techniques without a need for additional data. The SMOF defines an iterative process first to construct multiple metamodels using different methods and then aggregate them into a weighted composite and finally optimize the super-metamodel through advanced sampling. The optimized super-metamodel can reduce an overall prediction error and sustains the performance regardless of dataset variation. To verify the method, we apply it to 24 test problems representing various scenarios. A case study conducted with additive manufacturing process data shows method effectiveness in practice.","PeriodicalId":142043,"journal":{"name":"Volume 1A: 38th Computers and Information in Engineering Conference","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Volume 1A: 38th Computers and Information in Engineering Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/DETC2018-86055","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

Statistical metamodels can robustly predict manufacturing process and engineering systems design results. Various techniques, such as Kriging, polynomial regression, artificial neural network and others, are each best suited for different scenarios that can range across a design space. Thus, methods are needed to identify the most appropriate metamodel or model composite for a given problem. To account for pros and cons of different metamodeling techniques for a wide diversity of data sets, in this paper we introduce a super-metamodel optimization framework (SMOF) to improve overall prediction accuracy by integrating different metamodeling techniques without a need for additional data. The SMOF defines an iterative process first to construct multiple metamodels using different methods and then aggregate them into a weighted composite and finally optimize the super-metamodel through advanced sampling. The optimized super-metamodel can reduce an overall prediction error and sustains the performance regardless of dataset variation. To verify the method, we apply it to 24 test problems representing various scenarios. A case study conducted with additive manufacturing process data shows method effectiveness in practice.
优化系统可预测性的超元建模框架
统计元模型可以有效地预测制造过程和工程系统的设计结果。各种技术,如克里格、多项式回归、人工神经网络等,都最适合不同的场景,可以跨越设计空间。因此,需要方法来为给定的问题识别最合适的元模型或模型组合。为了考虑不同元建模技术对各种数据集的优缺点,在本文中,我们引入了一个超元模型优化框架(SMOF),通过集成不同的元建模技术来提高整体预测精度,而无需额外的数据。SMOF定义了一个迭代过程,首先使用不同的方法构建多个元模型,然后将它们聚合成一个加权组合,最后通过高级抽样对超元模型进行优化。优化后的超元模型可以降低整体预测误差,并在数据集变化的情况下保持预测性能。为了验证该方法,我们将其应用于代表不同场景的24个测试问题。以增材制造工艺数据为例,验证了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信